Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576218

RESUMO

Natural melanocortins (MCs) have been used in the successful development of drugs with neuroprotective properties. Here, we studied the behavioral effects and molecular genetic mechanisms of two synthetic MC derivatives-ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP under normal and acute restraint stress (ARS) conditions. Administration of Semax or ACTH(6-9)PGP (100 µg/kg) to rats 30 min before ARS attenuated ARS-induced behavioral alterations. Using high-throughput RNA sequencing (RNA-Seq), we identified 1359 differentially expressed genes (DEGs) in the hippocampus of vehicle-treated rats subjected to ARS, using a cutoff of >1.5 fold change and adjusted p-value (Padj) < 0.05, in samples collected 4.5 h after the ARS. Semax administration produced > 1500 DEGs, whereas ACTH(6-9)PGP administration led to <400 DEGs at 4.5 h after ARS. Nevertheless, ~250 overlapping DEGs were identified, and expression of these DEGs was changed unidirectionally by both peptides under ARS conditions. Modulation of the expression of genes associated with biogenesis, translation of RNA, DNA replication, and immune and nervous system function was produced by both peptides. Furthermore, both peptides upregulated the expression levels of many genes that displayed decreased expression after ARS, and vice versa, the MC peptides downregulated the expression levels of genes that were upregulated by ARS. Consequently, the antistress action of MC peptides may be associated with a correction of gene expression patterns that are disrupted during ARS.


Assuntos
Perfilação da Expressão Gênica , Hipocampo/metabolismo , Melanocortinas/farmacologia , Hormônio Adrenocorticotrópico/análogos & derivados , Hormônio Adrenocorticotrópico/farmacologia , Animais , Comportamento Animal , Isquemia Encefálica/metabolismo , Replicação do DNA , Modelos Animais de Doenças , Expressão Gênica , Sistema Imunitário , Masculino , Melanocortinas/sangue , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , RNA-Seq , Ratos , Ratos Wistar , Restrição Física , Estresse Fisiológico , Transcriptoma
2.
Hautarzt ; 71(10): 741-751, 2020 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-32880662

RESUMO

Melanocortins are peptides that share a common central pharmacophor. Melanin pigmentation of interfollicular epidermis and hair via MC1R remains the key physiologic function of the naturally occurring melanocortin peptides in skin. Moreover, the melanocortins are crucially involved in the ultraviolet light-induced tanning response. Under pathophysiologic conditions, melanocortin peptides induce cutaneous hyperpigmentation, likewise via the MC1R axis, e.g. in patients with Addison's disease, ectopic precursor pro-opiomelanocortin (POMC) syndrome and in those with abnormally elevated melanocortin blood levels. Translational research on α­MSH (melanocyte-stimulating hormones) and their antagonists has further revealed a variety of other biological activities beyond pigmentation. They include cytoprotection, antioxidative effects, regulation of collagen metabolism and fibrosis, sebum production, and cutaneous wound healing. These findings have also promoted the development of novel therapies in clinical dermatology including the exploitation of afamelanotide. In 2015, this agent became the first in-class synthetic α­MSH analogue to be approved in dermatology for the treatment of erythropoetic protoporphyria. In addition to afamelanotide, setmelanotide has recently emerged as a highly selective MC4R agonist useful for the treatment of distinct forms of genetically determined obesity, e.g., POMC deficiency. Future perspectives in dermatology reside in treatment of other difficult-to-treat skin diseases with α­MSH analogues, either with topical or systemic formulations. Moreover, synthetic melanocortin peptide derivatives lacking the central pharmacophor but with maintained anti-inflammatory effects could become a promising strategy for the design of new therapies in dermatology.


Assuntos
Dermatologia/tendências , Melanocortinas/química , Peptídeos/química , Pesquisa Translacional Biomédica , Humanos , Inflamação/metabolismo , Melanocortinas/farmacologia , Peptídeos/farmacologia , Pró-Opiomelanocortina , Pele/metabolismo , alfa-MSH
3.
Exp Dermatol ; 28(3): 219-224, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30661264

RESUMO

Cutaneous wound healing is a complex process divided into different phases, that is an inflammatory, proliferative and remodelling phase. During these phases, a variety of resident skin cell types but also cells of the immune system orchestrate the healing process. In the last year, it has been shown that the majority of cutaneous cell types express the melanocortin 1 receptor (MC1R) that binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and elicits pleiotropic biological effects, for example modulation of inflammation and immune responses, cytoprotection, antioxidative defense and collagen turnover. Truncated α-MSH peptides such as Lys-Pro-Val (KPV) as well as derivatives like Lys-d-Pro-Thr (KdPT), the latter containing the amino acid sequence 193-195 of interleukin-1ß, have been found to possess anti-inflammatory effects but to lack the pigment-inducing activity of α-MSH. We propose here that such peptides are promising future candidates for the treatment of cutaneous wounds and skin ulcers. Experimental approaches in silico, in vitro, ex vivo and in animal models are outlined. This is followed by an unbiased discussion of the pro and contra arguments of such peptides as future candidates for the therapeutic management of cutaneous wounds and a review of the so-far available data on melanocortin peptides and derivatives in wound healing.


Assuntos
Melanocortinas/química , Peptídeos/química , Pele/metabolismo , Cicatrização , Animais , Linhagem Celular , Humanos , Inflamação/metabolismo , Melanocortinas/farmacologia , Camundongos , Estresse Oxidativo , Peptídeos/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , alfa-MSH/metabolismo
4.
Endocrinology ; 158(6): 1766-1775, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419227

RESUMO

Continuous nutritional surplus sets the stage for hypertension development. Whereas moderate dietary obesity in mice is normotensive, the homeostatic balance is disrupted concurrent with an increased risk of hypertension. However, it remains unclear how the obesity-associated prehypertensive state is converted into overt hypertension. Here, using mice with high-fat-diet (HFD)-induced moderate obesity vs control diet (CD)-fed lean mice, we comparatively studied the effects of central leptin and tumor necrosis factor-α (TNFα) as well as the involvement of the neuropeptide melanocortin pathway vs the neurotransmitter glutamate pathway. Compared with CD-fed lean mice, the pressor effect of central excess leptin and TNFα, but not melanocortin, was sensitized in HFD-fed mice. The pressor effect of central leptin in HFD-fed mice was strongly suppressed by glutamatergic inhibition but not by melanocortinergic inhibition. The pressor effect of central TNFα was substantially reversed by melanocortinergic inhibition in HFD-fed mice but barely in CD-fed mice. Regardless of diet, the hypertensive effects of central TNFα and melanocortin were both partially reversed by glutamatergic suppression. Hence, neural control of blood pressure is mediated by a signaling network between leptin, TNFα, melanocortin, and glutamate and changes in dynamics due to central excess leptin and TNFα mediate the switch from normal physiology to obesity-related hypertension.


Assuntos
Pressão Sanguínea , Ácido Glutâmico/farmacologia , Hipertensão/etiologia , Leptina/farmacologia , Melanocortinas/farmacologia , Obesidade/complicações , Fator de Necrose Tumoral alfa/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Hipertensão/fisiopatologia , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Eur J Pharmacol ; 745: 108-16, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446929

RESUMO

We previously reported that melanocortins afford cardioprotection in conditions of experimental myocardial ischemia/reperfusion, with involvement of the janus kinases (JAK), extracellular signal-regulated kinases (ERK) and signal transducers and activators of transcription (STAT) signalings. We investigated the influence of the melanocortin analog [Nle(4), D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) on short-term detrimental responses to cardiac arrest (CA) induced in rats by intravenous (i.v.) administration of potassium chloride, followed by cardiopulmonary resuscitation (CPR) plus epinephrine treatment. In CA/CPR rats i.v. treated with epinephrine (0.1 mg/kg) and returned to spontaneous circulation (48%) we recorded low values of mean arterial pressure (MAP) and heart rate (HR), alteration of hemogasanalysis parameters, left ventricle low expression of the cardioprotective transcription factors pJAK2 and pTyr-STAT3 (JAK-dependent), increased oxidative stress, up-regulation of the inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and down-regulation of the anti-inflammatory cytokine IL-10, as assessed at 1h and 3h after CPR. On the other hand, i.v. treatment during CPR with epinephrine plus NDP-α-MSH (340 µg/kg) almost completely restored the basal conditions of MAP and HR, reversed metabolic acidosis, induced left ventricle up-regulation of pJAK2, pTyr-STAT3 and IL-10, attenuated oxidative stress, down-regulated TNF-α and IL-6 levels, and improved survival rate by 81%. CA/CPR plus epinephrine alone or in combination with NDP-α-MSH did not affect left ventricle pSer-STAT3 (ERK1/2-dependent) and pERK1/2 levels. These results indicate that melanocortins improve return to spontaneous circulation, reverse metabolic acidosis, and inhibit heart oxidative stress and inflammatory cascade triggered by CA/CPR, likely via activation of the JAK/STAT signaling pathway.


Assuntos
Cardiotônicos/farmacologia , Parada Cardíaca/tratamento farmacológico , alfa-MSH/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Dióxido de Carbono/sangue , Reanimação Cardiopulmonar , Cardiotônicos/administração & dosagem , Citocinas/metabolismo , Epinefrina/administração & dosagem , Epinefrina/farmacologia , Parada Cardíaca/patologia , Parada Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melanocortinas/administração & dosagem , Melanocortinas/farmacologia , Melanocortinas/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/administração & dosagem , alfa-MSH/farmacologia
6.
PLoS One ; 8(2): e56004, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457491

RESUMO

In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Melanocortinas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antifúngicos/química , Antifúngicos/uso terapêutico , Células COS , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/microbiologia , Células Cultivadas , Chlorocebus aethiops , Citocinas/imunologia , Feminino , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Melanocortinas/química , Melanocortinas/uso terapêutico , Camundongos , Fagocitose/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Melanocortina/imunologia , Vagina/efeitos dos fármacos , Vagina/imunologia , Vagina/microbiologia
7.
Front Neuroendocrinol ; 33(2): 179-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22531139

RESUMO

Melanocortin peptides with the adrenocorticotropin/melanocyte-stimulating hormone (ACTH/MSH) sequences and synthetic analogs have protective and life-saving effects in experimental conditions of circulatory shock, myocardial ischemia, ischemic stroke, traumatic brain injury, respiratory arrest, renal ischemia, intestinal ischemia and testicular ischemia, as well as in experimental heart transplantation. Moreover, melanocortins improve functional recovery and stimulate neurogenesis in experimental models of cerebral ischemia. These beneficial effects of ACTH/MSH-like peptides are mostly mediated by brain melanocortin MC(3)/MC(4) receptors, whose activation triggers protective pathways that counteract the main ischemia/reperfusion-related mechanisms of damage. Induction of signaling pathways and other molecular regulators of neural stem/progenitor cell proliferation, differentiation and integration seems to be the key mechanism of neurogenesis stimulation. Synthesis of stable and highly selective agonists at MC(3) and MC(4) receptors could provide the potential for development of a new class of drugs for a novel approach to management of severe ischemic diseases.


Assuntos
Hipóxia/tratamento farmacológico , Melanocortinas/uso terapêutico , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Humanos , Hipóxia/patologia , Melanocortinas/metabolismo , Melanocortinas/farmacologia , Modelos Biológicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Receptores de Melanocortina/fisiologia , Índice de Gravidade de Doença , Choque/tratamento farmacológico , Choque/prevenção & controle
8.
Mol Cell Endocrinol ; 341(1-2): 9-17, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21616121

RESUMO

The melanocortin receptors (MCRs) belong to the G-protein coupled receptors (family A). So far, 5 different subtypes have been described (MC1R-MC5R) and of these MC2R and MC5R have been proposed to act directly in adipocytes and regulate lipolysis in rodents. Using ACTH and α-melanocyte stimulating hormone (α-MSH) generated from proopiomelanocortin (POMC), as well as synthetic MSH analogues to stimulate lipolysis in murine 3T3-L1 adipocytes it is shown that MC2R and MC5R are lipolytic mediators in differentiated 3T3-L1 adipocytes. Involvement of cAMP, phosphorylated extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (PKB), adenosine 5' monophosphate activated protein kinase (AMPK) and Jun-amino-terminal kinase (JNK) in MCR mediated lipolysis were studied. Interestingly, results obtained in 3T3-L1 cells suggest that lipolysis stimulated by α-MSH, NDP-α-MSH, MT-II, SHU9119 and PG-901 is mediated through MC5R in a cAMP independent manner. Finally, we identify essential differences in MCR mediated lipolysis when using 3T3-L1 cells compared to primary adipocytes.


Assuntos
Adipócitos/metabolismo , Lipólise , Sistema de Sinalização das MAP Quinases , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia , Hormônio Adrenocorticotrópico/farmacologia , Hormônio Adrenocorticotrópico/fisiologia , Animais , Ligação Competitiva , AMP Cíclico/metabolismo , Epididimo/citologia , Epididimo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Hormônios/farmacologia , Hormônios/fisiologia , Masculino , Melanocortinas/farmacologia , Melanocortinas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Melanocortina/agonistas , Receptor Tipo 2 de Melanocortina/genética , Receptores de Melanocortina/genética
9.
Curr Rheumatol Rep ; 13(2): 138-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21243457

RESUMO

Gouty arthritis is a form of acute joint inflammation provoked by joint deposition of urate crystals. Although this acute pathology resolves after a few days, the marked degree of inflammation in the joint and--possibly more important to the patient--the excruciating pain it causes require proper therapeutic management. Often deemed a "poor sibling" of chronic joint pathologies such as rheumatoid arthritis and psoriatic arthritis, the increasing incidence of gout makes it a more palatable disease for novel drug discovery programs. This fact, associated with novel insights into the molecular mechanisms activated by the urate crystal deposition, is at the basis of new therapeutics under clinical development for gout, a valid example being the effective targeting of the proinflammatory cytokine interleukin-1. Here we briefly review the current status of antigout drug development and propose another target; our focus is on melanocortin receptor agonists as novel therapeutics for gout and inflammatory arthritides, a prototype of which, the adrenocorticotropic hormone, is already used in clinical settings.


Assuntos
Artrite Gotosa/tratamento farmacológico , Supressores da Gota/uso terapêutico , Melanocortinas/metabolismo , Receptores de Melanocortina/metabolismo , Alopurinol/uso terapêutico , Animais , Artrite Gotosa/metabolismo , Colchicina/uso terapêutico , Cristalização , Modelos Animais de Doenças , Humanos , Injeções Intra-Articulares , Melanocortinas/farmacologia , Camundongos , Receptores de Melanocortina/efeitos dos fármacos , Ácido Úrico/administração & dosagem , Ácido Úrico/metabolismo
10.
J Endocrinol ; 207(2): 177-83, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20696697

RESUMO

Human melanocortin 4 receptor (hMC4R) mutations with in vitro functional effects are responsible for 0.5-2.5% of severe obesity. Designing ligands that are able to counteract this in vitro-associated molecular defect is crucial to develop specific anti-obesity drugs in these genetically associated cases. We analyzed the in vitro effect of two novel melanocortin agonists, IRC-022493 and IRC-022511, on typical hMC4R mutations chosen based on the nature of their functional alterations, i.e. intracytoplasmic retention and/or reduced basal activity and/or reduced α-MSH potency. We assessed the in vitro ability of IRC-022493 and IRC-022511 to bind and activate hMC4R mutants. These mutations were found earlier in 11 obese French patients (median age (range) was 17.6 years (5.7-48.0) and body mass index (BMI)-Z-score 4.2 s.d. (1.5-5.5). The MC4R agonists were responsible for a significant activation of mutated hMC4R depending on the functional characteristics of the mutations. Both agonists were able to activate mutated hMC4R with decreased α-MSH potency, associated with or without decreased basal activity, to the same extent than α-MSH in wild-type MC4R. This result suggests that those mutations would be the best targets for the MC4R agonists among MC4R mutation-bearing obese patients. No specific clinical phenotype was associated with the differential response to pharmacological agonists. We identified two novel melanocortin agonists that were able in vitro to efficiently activate mutated hMC4R with impaired endogenous agonist functional response. These results stimulate interest in the development of these drugs for hMC4R mutations-associated obesity.


Assuntos
Melanocortinas/farmacologia , Obesidade/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Células CHO , Criança , Pré-Escolar , Clonagem Molecular , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Desenho de Fármacos , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ligação Proteica , Receptor Tipo 4 de Melanocortina/metabolismo , Adulto Jovem
11.
Eur J Pharmacol ; 637(1-3): 124-30, 2010 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-20385118

RESUMO

Recently we reported that an efferent vagal fibre-mediated cholinergic protective pathway, activated by melanocortins acting at brain melanocortin MC(3) receptors, is operative in a condition of short-term myocardial ischemia/reperfusion associated with a high incidence of severe arrhythmias and death. Here we investigated melanocortin effects, and the role of the vagus nerve-mediated cholinergic protective pathway, in a rat model of prolonged myocardial ischemia/reperfusion associated with marked inflammatory and apoptotic reactions, and a large infarct size. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30 min. At the end of the 2-h reperfusion, western blot analysis of the inflammatory and apoptotic markers tumor necrosis factor-alpha (TNF-alpha), c-jun N-terminal kinases (JNK) and caspase-3, as well as of the anti-apoptotic extracellular signal-regulated kinases (ERK 1/2), was performed in the left ventricle. In saline-treated ischemic rats there was an increase in TNF-alpha levels and in the activity of JNK and caspase-3 accompanied, despite an appreciable ERK 1/2 activation, by a large infarct size. Intravenous treatment, during coronary artery occlusion, with the melanocortin analog [Nle(4), D-Phe(7)]alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) produced a reduction in TNF-alpha levels and in the activity of JNK and caspase-3, associated with marked activation of the pro-survival kinases ERK 1/2, and consequent attenuation of infarct size. Bilateral cervical vagotomy blunted the protective effects of NDP-alpha-MSH. These results indicate that melanocortins modulate the inflammatory and apoptotic cascades triggered by prolonged myocardial ischemia/reperfusion, and reduce infarct size, seemingly by activation of the vagus nerve-mediated cholinergic protective pathway.


Assuntos
Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Melanocortinas/farmacologia , Melanocortinas/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Nervo Vago/efeitos dos fármacos , Animais , Western Blotting , Caspase 3/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/fisiologia
12.
Endocrinology ; 150(12): 5488-97, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19819961

RESUMO

To further test the hypothesis that melanocortins stimulate the reproductive axis, we treated ewes with melanocortin agonist (MTII) in the luteal phase of the estrous cycle and during seasonal anestrus. Lateral ventricular infusion of MTII (10 microg/h) during the luteal phase increased LH secretion. Retrograde neuronal tracing in the brain showed few proopiomelanocortin or kisspeptin cells in the arcuate nucleus, but more than 70% of kisspeptin cells in the dorsolateral preoptic area (POA), projecting to the ventromedial POA in which GnRH cells are located. MTII infusion (20 h) was repeated in luteal phase ewes and brains were harvested to measure gene expression of preproorexin and kisspeptin. Expression of orexin in the dorsomedial hypothalamus and kisspeptin in the POA was up-regulated by MTII treatment and Kiss1 in the arcuate nucleus was down-regulated. Seasonally anestrous ewes were progesterone primed and then treated (lateral ventricular) with MTII (10 microg/h) or vehicle for 30 h, and blood samples were collected every 2 h from 4 h before infusion until 6 h afterward to monitor acute response in terms of LH levels. A rise in basal LH levels was seen, but samples collected around the time of the predicted LH surge did not indicate that an ovulatory event occurred. We conclude that melanocortins are positive regulators of the reproductive neuroendocrine system, but treatment with melanocortins does not fully overcome seasonal acyclicity. The stimulatory effect of melanocortin in the luteal phase of the estrous cycle may be via the activation of kisspeptin cells in the POA and/or orexin cells in the dorsomedial hypothalamus.


Assuntos
Melanocortinas/farmacologia , Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Ciclo Estral , Feminino , Expressão Gênica/efeitos dos fármacos , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hormônio Luteinizante/sangue , Melanocortinas/genética , Melanocortinas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Orexinas , Peptídeos Cíclicos/farmacologia , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radioimunoensaio , Ovinos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
13.
PLoS Biol ; 7(9): e1000203, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19787026

RESUMO

Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time.


Assuntos
Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Gimnotiformes/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Hormônio Adrenocorticotrópico/farmacologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Venenos de Cnidários/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Órgão Elétrico/citologia , Órgão Elétrico/efeitos dos fármacos , Órgão Elétrico/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Melanocortinas/farmacologia , Modelos Biológicos , Peptídeos/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transporte Proteico/efeitos dos fármacos , Sódio/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
14.
J Neurochem ; 110(1): 390-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457101

RESUMO

The co-existence of receptors for leptin and melanocortin in cerebral microvessels suggests possible interactions between leptin and alpha-melanocyte stimulating hormone (MSH) signaling. In this study, we showed that ObRb and melanocortin receptor MC3R and MC4R were present in enriched cerebral microvessels. To test the interactions between ObRb and MC3R or MC4R-mediated cellular signaling, we over-expressed these plasmids in RBE4 cerebral microvascular endothelial cells and HEK293 cells in culture. Activation of signal transducers and activators of transcription-3 (STAT3) in response to leptin was determined by western blotting and luciferase reporter assays. Production of cAMP downstream to melanocortin receptors was determined with a chemiluminescent ELISA kit. alphaMSH, which increased intracellular cAMP, also potentiated leptin-induced STAT3 activation. This potentiation was abolished by a specific MEK inhibitor, indicating the involvement of the mitogen-activated kinase pathway. Reversely, the effect of leptin on alphaMSH-induced cAMP production was minimal. Thus, melanocortin specifically potentiated STAT3 signaling downstream to ObRb by cross-talk with mitogen-activated kinase. The cooperation of ObRb and G protein-coupled receptors in cellular signaling may have considerable biological implications not restricted to feeding and obesity.


Assuntos
Artérias Cerebrais/metabolismo , Leptina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Melanocortinas/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Artérias Cerebrais/efeitos dos fármacos , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Leptina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanocortinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/efeitos dos fármacos , Microcirculação/fisiologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores para Leptina/efeitos dos fármacos , Receptores para Leptina/genética , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , alfa-MSH/metabolismo , alfa-MSH/farmacologia
15.
Pharmacol Res ; 59(1): 13-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996199

RESUMO

The melanocortins (alpha, beta and gamma-melanocyte-stimulating hormones: MSHs; adrenocorticotrophic hormone: ACTH), a family of pro-opiomelanocortin (POMC)-derived peptides having in common the tetrapeptide sequence His-Phe-Arg-Trp, have progressively revealed an incredibly wide range of extra-hormonal effects, so to become one of the most promising source of innovative drugs for many, important and widespread pathological conditions. The discovery of their effects on some brain functions, independently made by William Ferrari and David De Wied about half a century ago, led to the formulation of the term "neuropeptide" at a time when no demonstration of the actual production of peptide molecules by neurons, in the brain, was still available, and there were no receptors characterized for these molecules. In the course of the subsequent decades it came out that melanocortins, besides inducing one of the most complex and bizarre behavioural syndromes (excessive grooming, crises of stretchings and yawnings, repeated episodes of spontaneous penile erection and ejaculation, increased sexual receptivity), play a key role in functions of fundamental physiological importance as well as impressive therapeutic effects in different pathological conditions. If serendipity had been an important determinant in the discovery of the above-mentioned first-noticed extra-hormonal effects of melanocortins, many of the subsequent discoveries in the pharmacology of these peptides (feeding inhibition, shock reversal, role in opiate tolerance/withdrawal, etc.) have been the result of a planned research, aimed at testing the "pro-nociceptive/anti-nociceptive homeostatic system" hypothesis. The discovery of melanocortin receptors, and the ensuing synthesis of selective ligands with agonist or antagonist activity, is generating completely innovative drugs for the treatment of a potentially very long list of important and widespread pathological conditions: sexual impotence, frigidity, overweight/obesity, anorexia, cachexia, haemorrhagic shock, other forms of shock, myocardial infarction, ischemia/reperfusion-induced brain damage, neuropathic pain, rheumathoid arthritis, inflammatory bowel disease, nerve injury, toxic neuropathies, diabetic neuropathy, etc. This review recalls the history of these researches and outlines the pharmacology of the extra-hormonal effects of melanocortins which are produced by an action at the brain level (or mainly at the brain level). In our opinion the picture is still incomplete, in spite of being already so incredibly vast and complex. So, for example, several of their effects and preliminary animal data suggest that melanocortins might be of concrete effectiveness in one of the areas of most increasing concern, i.e., that of neurodegenerative diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Melanocortinas/farmacologia , Hormônio Adrenocorticotrópico/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , Memória/efeitos dos fármacos , Dor/fisiopatologia , Ereção Peniana/efeitos dos fármacos , Sistema Nervoso Periférico/efeitos dos fármacos , Comportamento Sexual/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , alfa-MSH/farmacologia
16.
Pulm Pharmacol Ther ; 21(6): 866-73, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18992358

RESUMO

In this study we set out to ascertain whether melanocortin peptides could be potential therapeutic agents in allergic and non-allergic models of lung inflammation by identifying the receptor(s) involved using a molecular, genetic and pharmacological approach. Western blot analyses revealed expression of the melanocortin receptor (MCR) type 1 and 3 on alveolar macrophages from wild-type mice. Alveolar macrophage incubation, with the selective MC3R agonist [D-TRP(8)]-gamma-MSH and pan-agonist alpha-MSH but not the selective MC1R agonist MS05, led to an increase in cAMP in wild-type macrophages. This increase occurred also in macrophages taken from recessive yellow (e/e; bearing a mutant and inactive MC1R) mice but not from MC3R-null mice. In an allergic model of inflammation, the pan-agonist alpha-MSH and selective MC3R agonist [D-TRP(8)]-gamma-MSH displayed significant attenuation of both eosinophil and lymphocyte accumulation but not IL-5 levels in wild-type and recessive yellow e/e mice. However in MC3R-null mice, alpha-MSH failed to cause a significant inhibition in these parameters, highlighting a preferential role for MC3R in mediating the anti-inflammatory effects of melanocortins in this model. Utilising a non-allergic model of LPS-induced lung neutrophilia, the pan-agonist alpha-MSH and selective MC3R agonist [D-TRP(8)]-gamma-MSH displayed significant attenuation of neutrophil accumulation and inhibition of TNF-alpha release. Thus, this study highlights that melanocortin peptides inhibit leukocyte accumulation in a model of allergic and non-allergic inflammation and this protective effect is associated with activation of the MC3R. The inhibition of leukocyte accumulation is via inhibition of TNF-alpha in the non-allergic model of inflammation but not IL-5 in the allergic model. These data have highlighted the potential for selective MC3R agonists as novel anti-inflammatory therapeutics in lung inflammation.


Assuntos
Pneumonia/metabolismo , Receptor Tipo 3 de Melanocortina/fisiologia , alfa-MSH/farmacologia , gama-MSH/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Eosinófilos/metabolismo , Interleucina-5/química , Linfócitos/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiologia , Melanocortinas/farmacologia , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Peptídeos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptor Tipo 1 de Melanocortina/fisiologia , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Fator de Necrose Tumoral alfa/química , alfa-MSH/agonistas , gama-MSH/agonistas
17.
Peptides ; 28(10): 2016-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17850921

RESUMO

Natural melanocortin peptides exert broad effects on the host and they have remarkable therapeutic potential. However, successful use of melanocortins as therapeutic agents depends on the design of molecules that have more stable pharmacological profiles. The synthetic peptide (CKPV)(2), based on the C-terminal sequence of alpha-melanocyte stimulating hormone (alpha-MSH), has anti-tumor necrosis factor-alpha (TNF-alpha) effects in vitro and in vivo and is a promising candidate to treat inflammation. Because neutrophil activity is a major target for anti-inflammatory therapies, we determined whether (CKPV)(2) modulates human neutrophil functions in vitro. Incubation of freshly-separated human neutrophils with 10(-12)-10(-6)M (CKPV)(2) significantly inhibited activities relevant to the inflammatory reaction. Neutrophil migration toward the two chemoattractants interleukin 8 (IL-8) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) was significantly inhibited by (CKPV)(2). (CKPV)(2) also inhibited reactive oxygen intermediate (ROI) production induced by phorbol 12-myristate 13-acetate (PMA), but not that induced by fMLP. Because these effects of (CKPV)(2) were abolished by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (ddAdo), they appear to be cAMP-dependent. Finally, the peptide reduced lipopolysaccharide (LPS)-stimulated expression of TNF-alpha, interleukin-1beta (IL-1beta), interleukin-8 (IL-8), and intercellular adhesion molecule 1 (ICAM-1), as well as TNF-alpha protein release in cell supernatants. The data indicate that (CKPV)(2) modulates broad cAMP-dependent, anti-inflammatory pathways in human neutrophils.


Assuntos
Anti-Inflamatórios/farmacologia , Melanocortinas/farmacologia , Neutrófilos/efeitos dos fármacos , Células Cultivadas , Humanos , Luminescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Curr Top Med Chem ; 7(11): 1098-1106, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17584130

RESUMO

Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific "superpotent" MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido.


Assuntos
Melanocortinas/metabolismo , Ereção Peniana/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Disfunção Erétil/patologia , Humanos , Masculino , Melanocortinas/química , Melanocortinas/farmacologia , Modelos Biológicos , Ereção Peniana/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores
19.
Peptides ; 28(4): 798-805, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17306418

RESUMO

The cloning of melanocortin (MC) receptors in distant species has provided us tools to get insight in how the ligand-receptors interactions in the MC system have evolved. We have however lacked studies on pharmacology of native ancient melanocortin peptides at the ancient MC receptors. In this paper we synthesized melanocortin peptides from both the sea lamprey (Petromyzon marinus) and spiny dogfish (Squalus acanthias) and tested them on the MC3 and MC4 receptors from spiny dogfish. The results show that both the dogfish and lamprey ACTH peptides have similar or higher affinity than the dogfish alpha-, beta- and gamma-MSH peptides to the dogfish MC3 and MC4 receptors. Moreover, both the dogfish and lamprey ACTH peptides have more than 10-fold higher affinity than alpha-MSH to the dogfish MC4 receptor. We also show that dogfish delta-MSH is able to bind to MC receptors and its potency is higher than of dogfish beta-MSH, which is considered to be its precursor. Our results provide the first evidence that native ACTH ligands from dogfish and lamprey have a preference above native MSH peptides to ancient version of the MC3 and MC4 receptors. This further strengthens the hypotheses that the ligand contributing to the first version of the melanocortin ligand-receptor system resembled ACTH.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Cação (Peixe)/metabolismo , Peptídeos/metabolismo , Petromyzon/metabolismo , Receptores de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/química , Sequência de Aminoácidos , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Melanocortinas/química , Melanocortinas/metabolismo , Melanocortinas/farmacologia , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Alinhamento de Sequência , gama-MSH/química , gama-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA