Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Pak J Pharm Sci ; 37(2(Special)): 443-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38822548

RESUMO

Gastric cancer remains a global health concern, driving the exploration of natural products with anticancer potential. This study investigated the antiproliferative activity and chemical composition of a 70% ethanolic extract from Melissa officinalis L. against human gastric cancer cells. The extract was prepared and evaluated for total phenolic content, antioxidant capacity and flavonoid content. The MTT test checked how well it stopped the growth of human gastric adenocarcinoma (AGS) and normal dermal fibroblast (HDF) cells. Data analysis (SPSS Statistics) determined viable cell percentages and performed regression analysis (p<0.05). The extract exhibited significant antiproliferative activity against AGS cells compared to normal cells (p<0.05), with decreasing IC50 values (564.3, 258.0 and 122.5 µg/ml) over 24, 48 and 72 hours. It also displayed antioxidant activity (IC50=16.8±1.41µg/ml) and contained substantial phenolics (225.76±4.1 mg GAE/g) and flavonoids (22.36±2.6 mg RUT/g). This study suggests the 70% ethanolic extract of M. officinalis effectively suppresses AGS cell growth and possesses promising antioxidant properties, highlighting its potential as a natural source of anticancer and antioxidant agents, deserving further investigation.


Assuntos
Adenocarcinoma , Antineoplásicos Fitogênicos , Antioxidantes , Proliferação de Células , Melissa , Fenóis , Extratos Vegetais , Neoplasias Gástricas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Melissa/química , Fenóis/farmacologia , Fenóis/análise , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/análise , Sobrevivência Celular/efeitos dos fármacos
2.
BMC Complement Med Ther ; 24(1): 211, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831283

RESUMO

OBJECTIVE: Although cancer therapy suppresses recurrence and prolongs life, it may be accompanied by strong side effects; thus, there is a strong demand for the development effective treatments with fewer side effects. Cancer therapy using plant-derived essential oils is attracting attention as one promising method. This study investigated the antitumor effects of essential oil volatiles on breast cancer cells and identifies four essential oils that display antitumor activity. METHODS: Breast cancer cells were cultured in a 96-well plate, then one of twenty essential oils was added dropwise to the central well. The plate was incubated at 37 °C for 48 h and the effect of the volatile components of each essential oil on the surrounding breast cancer cell growth ability was examined using an MTT assay. Gas chromatography was used to investigate the concentration of the transpiration components that may affect cancer cells. RESULTS: Of the 20 essential oils, Lemongrass, Lemon myrtle, Litsea, and Melissa displayed strong anti-tumor effects. These essential oils inhibited the growth of nearby breast cancer cells, even when diluted more than 500-fold. The transpiration component of lemon Myrtle showed the strongest antitumor effect, but was the least cytotoxic to mononuclear cells in normal peripheral blood (PBMC). Each of these essential oils contained a very large amount of citral. The IC50 against breast cancer cells when citral was volatilized from each essential oil was 1.67 µL/mL for geranial and 1.31 µL/mL for neral. Volatilized citral alone showed strong anti-proliferation and infiltration-inhibiting effects. CONCLUSION: The transpiration components of Lemongrass, Lemon myrtle, Litsea, and Melissa are thought to inhibit breast cancer cell proliferation due to their high levels of citral.


Assuntos
Monoterpenos Acíclicos , Neoplasias da Mama , Litsea , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Monoterpenos Acíclicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Litsea/química , Feminino , Linhagem Celular Tumoral , Melissa/química , Proliferação de Células/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antineoplásicos Fitogênicos/farmacologia , Monoterpenos/farmacologia
3.
Environ Sci Pollut Res Int ; 31(25): 36882-36893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758440

RESUMO

Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.


Assuntos
Cinamatos , Depsídeos , Ferro , Melissa , Óleos Voláteis , Ácido Rosmarínico , Zinco , Depsídeos/metabolismo , Cinamatos/metabolismo , Fenóis , Nanopartículas Metálicas , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos
4.
BMC Complement Med Ther ; 24(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303002

RESUMO

BACKGROUND: Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS: Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-ß1) were determined. RESULTS: MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-ß1/Smad pathway. CONCLUSION: Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.


Assuntos
Hipertireoidismo , Hepatopatias , Melissa , Extratos Vegetais , Animais , Ratos , Expressão Gênica , Hipertireoidismo/complicações , Hipertireoidismo/tratamento farmacológico , Inflamação/metabolismo , Fígado , Melissa/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Hormônios Tireóideos/metabolismo , Tiroxina/genética , Tiroxina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Hepatopatias/etiologia , Hepatopatias/terapia
5.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257290

RESUMO

Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic-maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method.


Assuntos
Melissa , Óleos Voláteis , Polifenóis , Acetona , Destilação , Fenóis , Ácido Gálico
6.
J Ethnopharmacol ; 321: 117500, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030022

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Lamiaceae) is a medicinal plant native to Mediterranean regions and found in other parts of the world. Extracts and essential oil from this widely cultivated culinary medicinal herb are used in traditional medicine to manage a variety of disorders that include epilepsy and pain. AIM OF THE STUDY: To assess the anti-nociceptive potentials of Melissa officinalis essential oil (MO) and probe the involvement of adrenergic, opioidergic, serotonergic and potassium adenosine triphosphate (KATP) mechanisms in its anti-nociceptive effects. MATERIAL AND METHODS: We employed formalin-, acetic acid and hot plate-induced nociception to study the acute anti-nociceptive effects of MO. The sciatic nerve injury (CCI) model of neuropathic pain was utilized to study the anti-nociceptive effects of MO on chronic pain. Effects of MO on anxiety, cognitive deficits, oxidative stress and inflammation in the CCI rats were evaluated on elevated plus maze, open field test, novel object recognition, oxidative stress parameters and pro-inflammatory cytokines, respectively. The possible mechanism(s) of MO's anti-nociceptive effects were elucidated using prazosin, yohimbine, propranolol, glibenclimide, naloxone and metergoline, which are acknowledged antagonists for α1-, α2- and ß-adrenergic, potassium adenosine triphosphate (KATP), opioidergic and serotonergic systems, respectively. RESULTS: MO significantly attenuated acetic acid- and formalin-induced nociception; prolonged the mean reaction time of rats on hot plate before and following sciatic nerve chronic injury (CCI). MO ameliorated anxiety, cognitive deficits and oxidative stress, reduced pro-inflammatory cytokine levels and produced a near total restoration of injured sciatic nerves in CCI rats. Naloxone, metergoline and glibenclimide significantly blocked, while prazosin, yohimbine and popranolol failed to block the anti-nociceptive effects of MO in formalin-induced nociception. CONCLUSIONS: MO contains biologically active compounds with potential anti-nociceptive properties that modulate KATP, opioidergic and serotonergic pathways. These support the development of bioactive compounds from MO as anti-nociceptive agents.


Assuntos
Dor Crônica , Melissa , Óleos Voláteis , Plantas Medicinais , Ratos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Dor Crônica/tratamento farmacológico , Metergolina , Formaldeído , Ioimbina , Adrenérgicos , Acetatos , Trifosfato de Adenosina , Naloxona/farmacologia , Potássio , Prazosina
7.
Nutrients ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764696

RESUMO

Oxidative stress is a common characteristic of psychiatric, neurological, and neurodegenerative disorders. Therefore, compounds that are neuroprotective and reduce oxidative stress may be of interest as novel therapeutics. Phenolic, flavonoid and anthocyanin content, ORAC and DPPH free radical scavenging, and Cu2+ and Fe2+ chelating capacities were examined in variations (fresh/capsule) of Queen Garnet plum (QGP, Prunus salicina), black pepper (Piper nigrum) clove (Syzygium aromaticum), elderberry (Sambucus nigra), lemon balm (Melissa officinalis) and sage (Salvia officinalis), plus two blends (Astralagus membranaceus-lemon balm-rich, WC and R8). The ability of samples to prevent and treat H2O2-induced oxidative stress in SH-SY5Y cells was investigated. Pre-treatment with WC, elderberry, QGP, and clove prevented the oxidative stress-induced reduction in cell viability, demonstrating a neuroprotective effect. Elderberry increased cell viability following oxidative stress induction, demonstrating treatment effects. Clove had the highest phenolic and flavonoid content, DPPH, and Cu2+ chelating capacities, whereas QGP and elderberry were highest in anthocyanins. Black pepper had the highest ORAC and Fe2+ chelating capacity. These findings demonstrate that plant extracts can prevent and treat oxidative stress-induced apoptosis of neuron-like cells in vitro. Further research into phytochemicals as novel therapeutics for oxidative stress in the brain is needed.


Assuntos
Melissa , Neuroblastoma , Fármacos Neuroprotetores , Sambucus , Humanos , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Antocianinas , Peróxido de Hidrogênio , Flavonoides/farmacologia
8.
Environ Sci Pollut Res Int ; 30(43): 98020-98033, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603240

RESUMO

In vitro drought stress has a considerable impact on the mass production of active compounds in medicinal plants. Nevertheless, photosynthesis, nutrient uptake, and protein synthesis may be negatively affected by drought, which results in poor growth. Titanium dioxide nanoparticles (TiO2 NPs) have recently been shown to play an important role in increasing nutrient uptake, resistance to various environmental stresses, and better plant growth. Regarding the importance of pharmaceutical metabolites of Melissa officinalis L., this experiment aimed to assess the role of TiO2 NPs in improving physiological responses and phytochemical properties in M. officinalis under in vitro drought stress. For this, two-week-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 0, 50, and 100 mg L-1 TiO2 NPs and 0, 3, and 6% (w/v) polyethylene glycol (PEG). Two weeks after treatments, a reduction of chlorophyll, protein content, essential elements, and enhancement of H2O2 and malondialdehyde (MDA) levels were seen as a result of drought stress. It was observed that M. officinalis partially responded to the drought by increasing non-enzymatic antioxidants, including phenolics, flavonoids, and anthocyanin and ascorbate peroxidase activity. Moreover, PEG-induced drought stress increased some important essential oil content such as limonene, alpha-pinene, myrcene, γ-3-carene, citral, and carvacrol; however, the results showed that TiO2 NPs not only increased the quantity of essential oils but also led to tolerance to the drought stress by increasing photosynthetic pigments, antioxidant systems, absorption of essential nutrients, and decreasing H2O2 and MDA levels.


Assuntos
Melissa , Óleos Voláteis , Óleos Voláteis/farmacologia , Antioxidantes , Plântula , Secas , Peróxido de Hidrogênio
9.
Cell Stress Chaperones ; 28(6): 709-720, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368180

RESUMO

The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.


Assuntos
Hipotireoidismo , Melissa , Ratos , Animais , Melissa/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteína X Associada a bcl-2/metabolismo , Caspase 12/metabolismo , Encéfalo/metabolismo , Apoptose , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Estresse do Retículo Endoplasmático
10.
J Ethnopharmacol ; 314: 116661, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207879

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Among the fewest drugs discovered are those belonging to the class of anxiolytics. Although some drug targets for anxiety disorders are established, it is hard to modify and selectively choose the active principle for those targets. Thus, the ethnomedical approach to treating anxiety disorders remains one of the most prevalent ways for (self)managing the symptoms. Melissa officinalis L. (lemon balm) has been extensively used as an ethnomedicinal remedy for the treatment of different psyche-related symptoms, especially dose related to restlessness. AIM OF THE STUDY: This work aimed to evaluate the anxiolytic activity, in several in vivo models, of the essential oil extracted from Melissa officinalis (MO) and its main constituent citronellal, a widespread plant utilized for managing anxiety. MATERIALS AND METHODS: In the present study several animal models were used to assess MO anxiolytic potential in mice. The effect of the MO essential oil applied in doses ranging from 12.5 to 100 mg/kg was estimated in light/dark, hole board, and marble burying tests. In parallel doses of citronellal corresponding to the ones in the MO essential oil were applied to animals to determine if this is the activity carrier. RESULTS: The results indicate that the MO essential oil exerts anxiolytic potential in all three experimental settings by significantly altering the traced parameters. The effects of citronellal are somewhat inconclusive and should not be interpreted only as anxiolytic but rather as a combination of anti-anxiety and motor-inhibiting effects. CONCLUSIONS: In conclusion, we could say that the results of the present study provide a base for future mechanistic studies that would evaluate the activity of M. officinalis essential oil on various neurotransmitter systems involved in the generation, propagation, and maintenance of anxiety.


Assuntos
Ansiolíticos , Melissa , Óleos Voláteis , Animais , Camundongos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Aldeídos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
Plant Foods Hum Nutr ; 78(2): 336-341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971946

RESUMO

Lemon balm (Melissa officinalis L.) is commonly consumed as an herbal tea for its antioxidant health benefits. Young seedlings known as microgreens are popular for their distinct flavors and can contain higher mineral content on a dry weight basis compared to their adult counterparts. However, the use of microgreens for herbal teas has not been previously investigated. In this study, lemon balm was grown to adult and microgreen harvest stages and prepared as herbal teas by brewing with boiled (100 °C) water for 5 minutes and room temperature water (22 °C) for 2 hours. The effects of harvest time and brewing method on the mineral content, phenolic compounds, and antioxidant capacity of lemon balm herbal teas were assessed. Results showed that adult lemon balm tea contained higher total phenolics, total flavonoids, rosmarinic acid, and antioxidant capacity than microgreen teas, with hot preparations containing the highest amounts (p ≤ 0.05). In contrast, microgreen lemon balm teas contained higher amounts of minerals (p ≤ 0.05), including calcium, potassium, magnesium, sodium, phosphorus, copper, and zinc. In general, brewing conditions did not impact the content of most minerals. Overall, the results support the potential of using dried microgreens as herbal teas. Microgreen lemon balm teas prepared hot and cold offer antioxidant compounds and are richer sources of minerals than adult teas. The ease of growth for microgreens offers consumers the opportunity for home preparation of a novel herbal tea beverage.


Assuntos
Melissa , Chás de Ervas , Antioxidantes/análise , Extratos Vegetais/farmacologia , Fenóis/análise , Minerais
12.
Complement Med Res ; 30(1): 45-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36423592

RESUMO

INTRODUCTION: During the processing of fresh plants, prolonged exposure to the air can cause rapid oxidative changes, and this is further accelerated if they have large surface areas. These changes can ultimately lead to losses in valuable ingredients and deterioration of the final product. Consequently, in the food, cosmetics, and pharmaceutical industries, oxidation and the use of antioxidant conservatives are major considerations during processing and production. However, similar considerations are not currently made for herbal medicines. The differences in the UV-Vis spectra of several commercial herbal mother tinctures were investigated here to determine if the oxidation process occurred and should thus be considered during their production. METHODS: The impact of air exposure on comminuted fresh Melissa officinalis and on the quality of the resulting mother tincture was evaluated using UV-Vis spectrophotometric analysis, antioxidant tests (potassium permanganate and FOLIN-Ciocalteu), and high-performance thin-layer chromatography. RESULTS: A time-dependent decrease in phenolic compounds, UV absorbance, and antioxidant capacity of the Melissa officinalis mother tincture were observed. Specifically, the antioxidant capacity of ground Melissa officinalis in the resulting herbal mother tincture was reduced by 40.47% and 55.52% after 5 and 30 min of air exposure, respectively. CONCLUSIONS: The results indicate that the Melissa officinalis mother tincture is affected if its comminuted starting material is exposed to air during the manufacturing process and that this should be considered when producing fresh herbal medicine plant products in the future.


Assuntos
Melissa , Plantas Medicinais , Feminino , Humanos , Antioxidantes , Melissa/química , Mães , Plantas Medicinais/química , Fenóis/análise
13.
Ann Nucl Med ; 37(3): 166-175, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36469234

RESUMO

OBJECTIVE: Hepatotoxicity remains amongst the restricting factors of Methotrexate (MTX)-associated cancer therapy, especially in high doses of chemo-drugs or prolonged treatment. Due to the known protective effects of Melissa officinalis (M. officinalis), the aqueous extract of this plant was evaluated to ameliorate MTX-associated hepatotoxicity in rats. METHODS: Adult female Wistar rats were received or not M. officinalis aqueous extract at doses of 100 mg/kg (for 14 and 24 consecutive days) and 2 g/kg (for 14 consecutive days) by gavage technique. MTX (20 mg/kg) was intraperitoneally injected on the 10th- and 20th-day post-M. officinalis treatment. 24 h after the last day of treatment, 99mTc-phytate was intravenously injected through the tail of rats. Animals were killed at 20 min after radiocolloid injection, and vital tissues including the liver and spleen were isolated, weighed, and their radioactivity was counted. As well, 99mTc-phytate scintigraphy and histopathology of the liver were performed for higher accuracy. RESULT: A significant increase in liver radioactivity was detected in M. officinalis+MTX receiving groups compared with the MTX rats which were more robust at a dose of 100 mg/kg for 14 days. Also, a significant reduction in liver radioactivity was evident with M. officinalis extract at a dose of 2 g/kg for 14 days in comparison with the control group, this reduction was not significant at the lower dose of 100 mg/kg. Gamma scintigraphy and histopathological examinations confirmed the hepatoprotective effect of M. officinalis vs MTX-induced liver injury in rats. CONCLUSION: In conclusion, we highlighted the liver uptake of 99mTc-phytate as a valuable method for assessment of liver toxicity and addressed that M. officinalis pretreatment (100 mg/kg for 14 days) ameliorates the MTX-associated hepatotoxicity in rats; however, M. officinalis itself induces liver toxicity at higher doses.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Melissa , Ratos , Animais , Metotrexato/toxicidade , Ratos Wistar , Ácido Fítico/farmacologia , Fígado/diagnóstico por imagem
14.
J Addict Dis ; 41(2): 167-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35550004

RESUMO

In the treatment of tobacco use disorder, current approaches focus on pharmacotherapy, nicotine replacement, and psychotherapy. However, traditional treatments have been widely used in societies for the purpose of smoking cessation for years. Although cases using traditional herbs in the self-treatment of addiction have been reported in the literature, studies on this subject are very limited. Research on certain herbs shows that they may be effective in the treatment of tobacco use disorder by different mechanisms, however, there is no evidence that they are safe to consume as cigarettes. This article aims to question the place of traditional herbs in tobacco use disorder treatment through a case who started to smoke Melissa officinalis herb to help his nicotine withdrawal.


Assuntos
Melissa , Abandono do Hábito de Fumar , Tabagismo , Humanos , Tabagismo/tratamento farmacológico , Nicotina/uso terapêutico , Dispositivos para o Abandono do Uso de Tabaco
15.
Food Microbiol ; 109: 104105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309459

RESUMO

The burden of foodborne illness has a negative effect on public health, but also in countries' economy. Melissa officinalis is an aromatic plant known for its biological properties, including antioxidant and antimicrobial effects. This work highlighted M. officinalis essential oil's antioxidant potential and antimicrobial activity against L. monocytogenes, presenting a bactericidal action and being able to inhibit some virulence attributes, such as biofilm formation. The pre-exposure of the bacterium to subinhibitory levels of essential oil (0.125 µL/mL) did not induce high tolerance to stresses (such as high temperature, low pH, osmotic stress and desiccation) or cross-resistance with antibiotics, while not modifying the invasion ability to Caco-2 cells. When applied in food model media (lettuce, chicken and milk) and watermelon juice, the essential oil showed to have antimicrobial activity in a lettuce leaf model medium, further diminishing L. monocytogenes contamination and inhibiting the natural microbiota present in watermelon juice. M. officinalis essential oil shows potential to be used as control of L. monocytogenes in watermelon juice, while increasing the food's microbial shelf life.


Assuntos
Anti-Infecciosos , Citrullus , Listeria monocytogenes , Melissa , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Melissa/química , Antioxidantes/farmacologia , Células CACO-2 , Anti-Infecciosos/farmacologia
16.
J Agric Food Chem ; 70(44): 14205-14219, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36306427

RESUMO

The goal of this research was to screen plant essential oils (EOs) as sprout inhibitors or suppressors in potato (Solanum tuberosum L.). Three controlled environment experiments were conducted to screen 18 EOs and several pure compounds as sprout inhibitors. The EOs were applied using the wicked method on potato cv. Gala in 19 L plastic containers. The results indicated that Melissa officinalis L. EO inhibited sprouting, while Coriandrum sativum L. seed oil and the EO blend of Lavandula angustifolia Mill. and Salvia sclarea L. suppressed sprouting. The EOs of interest were analyzed using gas chromatography coupled to mass spectrometry (GC-MS) and/or a flame ionization detector (GC-FID); the detailed chemical profiles are provided. The M. officinalis EO was fractionated into seven fractions, and these were tested on minitubers. We identified two fractions (F and A) that suppressed potato sprouting better than the whole oil. The GC-MS-FID analyses of M. officinalis EO fraction A identified myrcene, Z-ocimene, E-ocimene, trans-caryophyllene, and α-humulene as the main constituents, while the main constituents of fraction F were α-terpineol, ß-citronellol, and geraniol. The pure isolated compounds, together with the major compound in M. officinalis EO (citral), were tested for sprout suppression on three potato cultivars (Ranger Russet, Terra Rosa, and Dakota TrailBlazer), which revealed that ß-citronellol reduced the sprout length and the number of sprouts in all three cultivars, while citral and (+)-α-terpineol reduced the sprout length and the number of sprouts in Ranger Russet relative to the two controls in all three cultivars. Myrcene had a stimulating effect on the number of sprouts in Cv. Terra Rosa. However, none of the pure compounds suppressed sprouting completely or were comparable to the EO of M. officinalis.


Assuntos
Melissa , Óleos Voláteis , Praguicidas , Solanum tuberosum , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química
17.
Arq. ciências saúde UNIPAR ; 26(3): 1149-1162, set-dez. 2022.
Artigo em Português | LILACS | ID: biblio-1414432

RESUMO

A depressão é uma doença grave que atinge a população em geral, estudos epidemiológicos estimam que a prevalência da depressão ao longo da vida no Brasil está em torno de 15,5%. Os fatores que desencadeiam o aparecimento da depressão incluem fatores sociais, psicológicos, biológicos e também fatores externos específicos como eventos estressantes, solidão, consumo de álcool e drogas, doenças crônicas e dar á luz (depressão pós-parto). O objetivo da presente pesquisa consistiu em realizar uma revisão bibliográfica sobre as principais plantas medicinais com ação antidepressiva. A ansiedade vem se tornando um dos principais problemas da atualidade, sendo intensificada pela pandemia causada pelo coronavírus, onde constatou-se que durante o pico da pandemia onde os casos confirmados de COVID-19 no Brasil ascenderam de 45.757 para 330.890, e as mortes, de 2.906 para 21.048, o sentimento de tristeza/depressão atingiu 40% dos adultos brasileiros. Os sintomas de depressão podem ser amenizados quando a disponibilidade sináptica de monoaminas são aumentadas, e esse aumento pode ocorrer através da diminuição da metabolização desses neurotransmissores. Neste sentido, busca-se através da farmacoterapia a utilização de antidepressivos que disponibilizem as monoaminas na fenda sináptica. A escolha do fármaco é feita com base nos sintomas da depressão e na boa resposta a uma determinada classe de antidepressivos. Em fevereiro de 2009 o Ministério da saúde lançou a Relação Nacional de Plantas Medicinais de Interesse ao SUS (RENISUS), contendo 71 espécies vegetais que são distribuídas de forma in natura nas unidades básicas de saúde (UBS). Destas, somente três espécies apresentam efeito antidepressivo e ansiolítico comprovados na literatura sendo Matricharia chamomilla, Erytrinum mulungu e a Passiflora incarnata que também fazem parte da RENISUS. Além destas, outras espécies como a Melissa officinalis, Lippia alba, Valeriana officinalis e Piper methysticum são utilizadas pela população para tratar ansiedade, insônia e depressão, sugerindo desta forma que estas espécies sejam incluídas na RENISUS.


Depression is a serious disease that affects the general population, epidemiological studies estimate that the prevalence of depression throughout life in Brazil is around 15.5%. The factors that trigger the onset of depression include social, psychological, biological and also specific external factors such as stressful events, loneliness, alcohol and drug consumption, chronic diseases and giving birth (postpartum depression). The objective of the present research was to carry out a literature review on the main medicinal plants with antidepressant action. Anxiety has become one of the main problems of today, being intensified by the pandemic caused by the coronavirus, where it was found that during the peak of the pandemic where confirmed cases of COVID-19 in Brazil rose from 45,757 to 330,890, and deaths, from 2,906 to 21,048, the feeling of sadness/depression reached 40% of Brazilian adults. Symptoms of depression can be alleviated when synaptic availability of monoamines is increased, and this increase can occur through decreased metabolization of these neurotransmitters. In this sense, the use of antidepressants that make monoamines available in the synaptic cleft is sought through pharmacotherapy. The choice of drug is based on symptoms of depression and good response to a particular class of antidepressants. In February 2009, the Ministry of Health launched the National List of Medicinal Plants of Interest to the SUS (RENISUS), containing 71 plant species that are distributed in natura form in basic health units (UBS). Of these, only three species have antidepressant and anxiolytic effects proven in the literature, being Matricharia chamomilla, Erytrinum mulungu and Passiflora incarnata, which are also part of RENISUS. In addition to these, other species such as Melissa officinalis, Lippia alba, Valeriana officinalis and Piper methysticum are used by the population to treat anxiety, insomnia and depression, thus suggesting that these species are included in RENISUS.


Los estudios epidemiológicos estiman que la prevalencia de la depresión a lo largo de la vida en Brasil es de alrededor del 15,5%. Los factores que desencadenan la aparición de la depresión son sociales, psicológicos, biológicos y también factores externos específicos, como los acontecimientos estresantes, la soledad, el consumo de alcohol y drogas, las enfermedades crónicas y el parto (depresión posparto). El objetivo de esta investigación fue realizar una revisión bibliográfica sobre las principales plantas medicinales con acción antidepresiva. La ansiedad se ha convertido en uno de los principales problemas de la actualidad, intensificándose por la pandemia causada por el coronavirus, donde se encontró que durante el pico de la pandemia donde los casos confirmados de COVID-19 en Brasil aumentaron de 45.757 a 330.890, y las muertes, de 2.906 a 21.048, el sentimiento de tristeza/depresión alcanzó el 40% de los adultos brasileños. Los síntomas de la depresión pueden aliviarse cuando se aumenta la disponibilidad sináptica de las monoaminas, y este aumento puede producirse mediante una disminución de la metabolización de estos neurotransmisores. En este sentido, se busca a través de la farmacoterapia el uso de antidepresivos que hagan disponibles las monoaminas en la hendidura sináptica. La elección del fármaco se hace en función de los síntomas de la depresión y de la buena respuesta a una clase concreta de antidepresivos. En febrero de 2009, el Ministerio de Salud lanzó la Lista Nacional de Plantas Medicinales de Interés para el SUS (RENISUS), que contiene 71 especies de plantas que se distribuyen in natura en unidades básicas de salud (UBS). De ellas, sólo tres especies tienen efectos antidepresivos y ansiolíticos probados en la literatura: Matricharia chamomilla, Erytrinum mulungu y Passiflora incarnata, que también forman parte del RENISUS. Además de éstas, otras especies como Melissa officinalis, Lippia alba, Valeriana officinalis y Piper methysticum son utilizadas por la población para tratar la ansiedad, el insomnio y la depresión, lo que sugiere que estas especies se incluyan en el RENISUS.


Assuntos
Plantas Medicinais/efeitos dos fármacos , Sistema Único de Saúde , Sistema Nervoso Central/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiolíticos/uso terapêutico , Valeriana/efeitos dos fármacos , Preparações Farmacêuticas , Kava/efeitos dos fármacos , Passiflora/efeitos dos fármacos , Matricaria/efeitos dos fármacos , Melissa/efeitos dos fármacos , Lippia/efeitos dos fármacos , Depressão/tratamento farmacológico , Tratamento Farmacológico , Emoções/efeitos dos fármacos , Erythrina/efeitos dos fármacos , Pandemias/prevenção & controle , Antidepressivos/uso terapêutico
18.
J Pharm Biomed Anal ; 220: 114969, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35961210

RESUMO

Plant cell culture is a biotechnology cultivation method that permit to cultivate plants in a short period of time and to obtain extracts with a high degree of standardization and high safety profile. The aim of our study was to evaluate the anti-inflammatory and neuroprotective activity of a standardized Melissa officinalis L. phytocomplex extract (MD) obtained with an in vitro plant cell culture. The MD has been chemically characterized and the content of total polyphenols was 5.17 ± 0.1 % w/w, with a content of rosmarinic acid (RA), its main constituent, of 4.02 ± 0.1 % w/w. MD was tested in an in vitro model of neuroinflammation, in which microglia cells (BV2) were stimulated with Lipopolysaccharides (LPS; 250 ng/mL) for 24 h and its pharmacological activity was compared with that of RA. MD (10 µg/mL) and RA (0.4 µg/mL) reduced pro-inflammatory factors (NF-kB, HDAC, IL-1ß) in LPS-stimulated BV2 cells and counteracted the toxic effect produced by activated microglia medium on neuronal cells. This work shows the efficacy of MD on reducing microglia-mediated neuroinflammation and promoting neuroprotection, highlighting the innovative use of in vitro plant cell cultures to obtain contaminant-free extracts endowed with marked activity and improved quali-quantitative ratio in the constituents' content.


Assuntos
Melissa , Microglia , Anti-Inflamatórios/farmacologia , Cinamatos , Depsídeos , Lipopolissacarídeos/toxicidade , NF-kappa B , Doenças Neuroinflamatórias , Extratos Vegetais/farmacologia , Ácido Rosmarínico
19.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889404

RESUMO

Melissa officinalis (MO), known as lemon balm, is a popular ingredient blended in herbal tea. In recent decades, the bioactivities of MO have been studied in sub-health and pathological status, highlighting MO possesses multiple pharmacological effects. We previously showed that hot water MO extract exhibited anticancer activity in colorectal cancer (CRC). However, the detailed mechanisms underlying MO-induced cell death remain elusive. To elucidate the anticancer regulation of MO extract in colon cancer, a data-driven analysis by proteomics approaches and bioinformatics analysis was applied. An isobaric tandem mass tags-based quantitative proteome analysis using liquid chromatography-coupled tandem mass spectrometry was performed to acquire proteome-wide expression data. The over-representation analysis and functional class scoring method were implemented to interpret the MO-induced biological regulations. In total, 3465 quantifiable proteoforms were identified from 24,348 peptides, with 67 upregulated and 54 downregulated proteins in the MO-treated group. Mechanistically, MO impeded mitochondrial respiratory electron transport by triggering a reactive oxygen species (ROS)-mediated oxidative stress response. MO hindered the mitochondrial membrane potential by reducing the protein expression in the electron transport chain, specifically the complex I and II, which could be restored by ROS scavenger. The findings comprehensively elucidate how MO hot water extract activates antitumor effects in colorectal cancer (CRC) cells.


Assuntos
Neoplasias do Colo , Melissa , Mitocôndrias , Extratos Vegetais , Neoplasias do Colo/tratamento farmacológico , Humanos , Melissa/química , Mitocôndrias/fisiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteoma , Espécies Reativas de Oxigênio/metabolismo , Água
20.
Molecules ; 27(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745044

RESUMO

In the context of the increasing lactation problems among breastfeeding women, the development of a healthy lifestyle is needed. Different variants of pork, turkey, and beef meatballs, with added lemon balm (Melissa officinalis L.) and wild thyme (Thymus serpyllum L.) aqueous extract (6%), were obtained. These herbs were selected and used due to their antioxidant, antimicrobial, and lactogenic potential. Two thermal treatments, hot air convection (180 °C) and steam convection (94 °C), were applied for meatballs processing. The obtained meatballs were further subjected to a complex characterization. The functionality of the plant extracts was proved by the values of total content of polyphenols (2.69 ± 0.02 mg AG/g dw) and flavonoids (3.03 ± 0.24 mg EQ/g dw). FT-IR analysis confirmed the presence of trans-anethole and estragole at 1507-1508 cm-1 and 1635-1638 cm-1, respectively. Costumers' overall acceptance had a score above 5.5 for all samples, on a scale of 1 to 9. Further analysis and human trials should be considered regarding the use of lactogenic herbs, given their health benefits and availability.


Assuntos
Melissa , Thymus (Planta) , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Bovinos , Feminino , Humanos , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA