Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Toxicon ; 241: 107673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432612

RESUMO

BACKGROUND: Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS: The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS: IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 µg/mL, 1.02 µg/mL, and 2.56 µg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS: Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Meliteno/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipossomos , Caspase 3 , Proteína X Associada a bcl-2/genética , Neoplasias Pulmonares/tratamento farmacológico
2.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445441

RESUMO

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Assuntos
Neoplasias Colorretais , Meliteno , Humanos , Células HCT116 , Meliteno/farmacologia , Meliteno/genética , Meliteno/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Resposta a Proteínas não Dobradas , Autofagia , RNA Mensageiro/metabolismo , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
3.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
4.
Front Immunol ; 15: 1326033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318188

RESUMO

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Assuntos
Venenos de Abelha , Meliteno , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais
5.
Arch Pharm (Weinheim) ; 357(4): e2300569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251938

RESUMO

Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.


Assuntos
Venenos de Abelha , Neoplasias , Humanos , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Relação Estrutura-Atividade , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/química
6.
Cancer Chemother Pharmacol ; 93(5): 397-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172304

RESUMO

OBJECTIVES: This study aimed to study the effect of protease-activated receptor 2 (PAR2) on the proliferation, invasion, and clone formation of lung cancer cells. It also aimed to evaluate the inhibitory effect of melittin on PAR2 and the anti-lung cancer effect of melittin combined with gefitinib. METHODS: The correlation between the co-expression of PAR2 and epithelial-mesenchymal transition (EMT) markers was analyzed. PAR2 in A549 and NCI-H1299 cells was knocked down using siRNA. MTT assay, Transwell assay, and colony formation assay were used to detect the effects of PAR2 on cell proliferation, invasion, and clone formation. The anti-cancer effect of PAR2 knockdown on gefitinib treatment was analyzed. The synergistic effect of melittin on gefitinib treatment by inhibiting PAR2 and the underlying molecular mechanism were further analyzed and tested. RESULTS: The expression of PAR2 was upregulated in lung cancer, which was associated with the poor prognosis of lung cancer. PAR2 knockdown inhibited the stemness and EMT of lung cancer cells. It also inhibited the proliferation, invasion, and colony formation of A549 and NCI-H1299 cells. Moreover, PAR2 knockdown increased the chemotherapeutic sensitivity of gefitinib in lung cancer. Melittin inhibited PAR2 and the malignant progression of lung cancer cells. Melittin increased the chemotherapeutic sensitivity of gefitinib in lung cancer by inhibiting PAR2. CONCLUSION: PAR2 may promote the proliferation, invasion, and colony formation of lung cancer cells by promoting EMT. Patients with a high expression of PAR2 have a poor prognosis. Inhibition of PAR2 increased the chemotherapeutic sensitivity of gefitinib. PAR2 may be a potential therapeutic target and diagnostic marker for lung cancer.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Gefitinibe , Neoplasias Pulmonares , Meliteno , Receptor PAR-2 , Humanos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Gefitinibe/farmacologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Meliteno/farmacologia , Linhagem Celular Tumoral , Células A549 , Progressão da Doença , Antineoplásicos/farmacologia , Técnicas de Silenciamento de Genes , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
7.
Toxicon ; 239: 107611, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211805

RESUMO

Melittin is honey bee venom's primary and most toxic pharmacologically active component. Melittin causes haemolysis, lymphocyte lysis, long-term pain, localised inflammation followed by rhabdomyolysis, and severe renal failure. Renal failure or cardiovascular complications could lead to the victim's death. Severe honey bee bites are treated with general medication involving antihistaminic, anti-inflammatory, and analgesic drugs, as a specific treatment option is unavailable. An earlier study showed the anti-hemolysis and anti-lymphocyte lysis activity of mini- αA-crystallin (MAC), a peptide derived from human eye lens alpha-crystallin. MAC's use has often been restricted despite its high therapeutic potential due to its poor skin permeability. This study compared the skin permeation, anti-inflammatory and analgesic activities of natural peptide MAC and its modified version (MAC-GRD) formed by attaching cell-penetrating peptide (CPP) and GRD amino residues into MAC. Gel formulations were prepared for MAC and MAC-GRD peptides using carbopol (1% w/w), Tween 80 (1%), and ethanol (10%). An ex-vivo skin permeation study was performed using a vertical-type Franz diffusion apparatus. Preclinical in-vivo experiments were conducted to compare the native and modified peptide formulations against melittin-induced toxicity in Wistar rats. MAC gel, MAC-GRD gel and 1% hydrocortisone cream significantly reduced the melittin-induced writhing (20.16 ± 0.792) response in rats with 15.16 ± 0.47, 11.16 ± 0.477 and 12.66 ± 0.66 wriths, respectively. There was a significant reduction in melittin-induced inflammation when MAC-GRD gel was applied immediately after melittin administration. At 0.5, 1, 3, and 5 h, the MAC-GRD-treated rat paws were 0.9 ± 0.043 mm, 0.750 ± 0.037 mm, 0.167 ± 0.0070 mm, and 0.133 ± 0.031 mm thick. Administration of melittin resulted in reduced GSH (antioxidant) levels (47.33 ± 0.760 µg/mg). However, treatment with MAC-GRD gel (71.167 ± 0.601 µg/mg), MAC gel (65.167 ± 1.138 µg/mg), and 1% hydrocortisone (68.33 ± 0.667 µg/mg) significantly increased the antioxidant enzyme levels. MAC-GRD gel significantly reduced the elevated MDA levels (6.933 ± 0.049 nmol/mg) compared to the melittin group (12.533 ± 0.126 nmol/mg), followed by the 1% hydrocortisone (7.367 ± 0.049 nmol/mg) and MAC gel (7.917 ± 0.048 nmol/mg). MAC-GRD demonstrated more skin permeability and superior anti-inflammatory, analgesic, and antioxidant activities when compared to MAC gel. When compared to standard 1% hydrocortisone cream, MAC-GRD had better anti-inflammatory, analgesic, antioxidant, and comparable action in anti-oxidant restoration against melittin. These findings suggest that the developed MAC-GRD gel formulation could help to treat severe cases of honey bee stings.


Assuntos
Cristalinas , Mordeduras e Picadas de Insetos , Insuficiência Renal , Ratos , Abelhas , Humanos , Animais , Meliteno/farmacologia , Hidrocortisona , Antioxidantes , Ratos Wistar , Peptídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos , Inflamação
8.
J Control Release ; 365: 802-817, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092255

RESUMO

Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.


Assuntos
Neoplasias da Mama , Nanopartículas , Coroa de Proteína , Humanos , Feminino , Ácido Glutâmico , Meliteno/química , Meliteno/farmacologia , Ácido Succínico , Vitamina E , Neoplasias da Mama/patologia , Nanopartículas/química , Água
9.
Neurochem Res ; 49(2): 348-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812268

RESUMO

Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Meliteno/genética , Regulação para Cima , Lipopolissacarídeos/farmacologia , Estudos Prospectivos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Microglia/metabolismo
10.
Redox Rep ; 29(1): 2290864, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149613

RESUMO

OBJECTIVES: Melittin, the main component of bee venom, is a natural anti-inflammatory substance, in addition to its ability to fight cancer, antiviral, and useful in diabetes treatment. This study seeks to determine whether melittin can protect renal tissue from sepsis-induced damage by preventing ferroptosis and explore the protective mechanism. METHODS: In this study, we investigated the specific protective mechanism of melittin against sepsis-induced renal injury by screening renal injury indicators and ferroptosis -related molecules and markers in animal and cellular models of sepsis. RESULTS: Our results showed that treatment with melittin attenuated the pathological changes in mice with lipopolysaccharide-induced acute kidney injury. Additionally, we found that melittin attenuated ferroptosis in kidney tissue by enhancing GPX4 expression, which ultimately led to the reduction of kidney tissue injury. Furthermore, we observed that melittin enhanced NRF2 nuclear translocation, which consequently upregulated GPX4 expression. our findings suggest that melittin may be a potential therapeutic agent for the treatment of sepsis-associated acute kidney injury by inhibiting ferroptosis through the GPX4/NRF2 pathway. CONCLUSIONS: Our study reveals the protective mechanism of melittin in septic kidney injury and provides a new therapeutic direction for Sepsis-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Sepse , Animais , Camundongos , Meliteno/farmacologia , Meliteno/uso terapêutico , Fator 2 Relacionado a NF-E2 , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/tratamento farmacológico
11.
Biotechnol Lett ; 46(1): 97-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109017

RESUMO

OBJECTIVES: Microalgae cell wall affects the recovery of lipids, representing one of the main difficulties in the development of biofuel production. This work aimed to test a new method based on melittin peptide to induce a cellular disruption in N. oleoabundans. RESULTS: Neochloris oleoabundans cells were grown at 32 °C in the presence of a high concentration of nitrate-phosphate, causing a cell disruption extent of 83.6%. Further, a two-fold increase in lipid recovery following melittin treatment and solvent extraction was observed. Additionally, it was possible to verify the effects of melittin, both before and after treatment on the morphology of the cells. Scanning electron microscopy (SEM) and confocal images of the melittin-treated microalgae revealed extensive cell damage with degradation of the cell wall and release of intracellular material. CONCLUSIONS: Melittin produced a selective cell wall rupture effect in N. oleoabundans under some culture conditions. These results represent the first report on the effect of melittin on lipid recovery from microalgae.


Assuntos
Clorófitas , Microalgas , Meliteno/farmacologia , Meliteno/metabolismo , Clorófitas/metabolismo , Peptídeos/metabolismo , Lipídeos
12.
Mol Biol (Mosk) ; 57(6): 1077-1083, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062961

RESUMO

Melittin, a peptide from bee venom, was found to be able to interact with many proteins, including calmodulin target proteins and ion-transporting P-type ATPases. It is assumed that melittin mimics a protein module involved in protein-protein interactions within cells. Previously, a Na^(+)/K^(+)-ATPase containing the α1 isoform of the catalytic subunit was found to co-precipitate with a protein with a molecular weight of about 70 κDa that interacts with antibodies against melittin by cross immunoprecipitation. In the presence of a specific Na^(+)/K^(+)-ATPase inhibitor (ouabain), the amount of protein with a molecular weight of 70 κDa interacting with Na^(+)/K^(+)-ATPase increases. In order to identify melittin-like protein from murine kidney homogenate, a fraction of melittin-like proteins with a molecular weight of approximately 70 κDa was obtained using affinity chromatography with immobilized antibodies specific to melittin. By mass spectrometry analysis, the obtained protein fraction was found to contain three molecular chaperones of Hsp70 superfamily: mitochondrial mtHsp70 (mortalin), Hsp73, Grp78 (BiP) of endoplasmic reticulum. These data suggest that chaperones from the HSP-70 superfamily contain a melittin-like module.


Assuntos
Meliteno , ATPase Trocadora de Sódio-Potássio , Camundongos , Animais , Meliteno/química , Meliteno/metabolismo , Meliteno/farmacologia , ATPase Trocadora de Sódio-Potássio/química , Peso Molecular , Ouabaína/farmacologia , Peptídeos/metabolismo , Chaperonas Moleculares/metabolismo
13.
Redox Rep ; 28(1): 2284517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041592

RESUMO

Melittin, a naturally occurring polypeptide found in bee venom, has been recognized for its potential anti-tumor effects, particularly in the context of lung cancer. Our previous study focused on its impact on human lung adenocarcinoma cells A549, revealing that melittin induces intracellular reactive oxygen species (ROS) burst and oxidative damage, resulting in cell death. Considering the significant role of mitochondria in maintaining intracellular redox levels and ROS, we further examined the involvement of mitochondrial damage in melittin-induced apoptosis in lung cancer cells. Our findings demonstrated that melittin caused changes in mitochondrial membrane potential (MMP), triggered mitochondrial ROS burst (Figure 1), and activated the mitochondria-related apoptosis pathway Bax/Bcl-2 by directly targeting mitochondria in A549 cells (Figure 2). Further, we infected A549 cells using a lentivirus that can express melittin-Myc and confirmed that melittin can directly target binding to mitochondria, causing the biological effects described above (Figure 2). Notably, melittin induced mitochondrial damage while inhibiting autophagy, resulting in abnormal degradation of damaged mitochondria (Figure 5). To summarize, our study unveils that melittin targets mitochondria, causing mitochondrial damage, and inhibits the autophagy-lysosomal degradation pathway. This process triggers mitoROS burst and ultimately activates the mitochondria-associated Bax/Bcl-2 apoptotic signaling pathways in A549 cells.


Assuntos
Neoplasias Pulmonares , Mitofagia , Humanos , Células A549 , Meliteno/farmacologia , Meliteno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Mitocôndrias/metabolismo , Apoptose , Potencial da Membrana Mitocondrial , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
14.
J Nanobiotechnology ; 21(1): 454, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017537

RESUMO

As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Meliteno/farmacologia , Meliteno/química , Meliteno/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Nanopartículas/química
15.
J Cancer Res Clin Oncol ; 149(19): 17709-17726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919474

RESUMO

BACKGROUND: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.


Assuntos
Antineoplásicos , Neoplasias , Animais , Meliteno/farmacologia , Meliteno/química , Meliteno/genética , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Modelos Animais , Proliferação de Células
16.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834402

RESUMO

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Meliteno/farmacologia , Transferrina/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos Transgênicos , Placa Amiloide/metabolismo , Modelos Animais de Doenças
17.
BMC Complement Med Ther ; 23(1): 377, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880739

RESUMO

BACKGROUND: Maintenance of immune system integrity is a vital requirement to protect human body against pathogens/cancers. Natural compounds have long been used due to their benefits for the immune system. One of which is bee venom that contains a peptide called melittin having antimicrobial and anticancer effects. Since a limited number of studies regarding the effects of melittin on the immune system have been carried out, we aimed to evaluate the effects of melittin on BALB/c mice immune system parameters. METHODS: Female BALB /c mice were treated intraperitoneally (i.p) with 0.75 and 1.5 mg/kg doses of melittin for 14 days (5 doses per week). The negative control group received i.p normal saline whereas the positive controls received i.p 20 mg/kg cyclophosphamide (CYP). Immunological parameters such as hematological parameters, delayed-type hypersensitivity (DTH), hemagglutination titer (HA), spleen cellularity, splenocytes proliferation, as well as spleen and bone marrow histopathological assessment were evaluated. RESULTS: Our findings showed that melittin has no gross pathological effect on the spleen and bone marrow. It was also demonstrated that melittin has no any significant effect on hematological parameters. Melittin did not cause any significant changes to proliferation response of splenocytes to PHA and LPS, spleen cellularity, DTH response, as well as the production of anti-SRBC antibodies. According to our results, melittin at 0.75 and 1.5 mg/kg doses could not induce significant changes on immune parameters and as a result, melittin was found to be safe for the mice immune system.


Assuntos
Hipersensibilidade Tardia , Meliteno , Humanos , Feminino , Camundongos , Animais , Meliteno/farmacologia , Camundongos Endogâmicos BALB C , Hipersensibilidade Tardia/patologia , Sistema Imunitário/patologia , Baço
18.
Sci Rep ; 13(1): 18225, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880286

RESUMO

Cervical cancer has recently become one of the most prevalent cancers among women throughout the world. Traditional cancer therapies generate side effects due to off-target toxicity. Thus, novel cancer medications coupled with suitable drug delivery systems are required to improve cancer therapies. Melittin peptide has a high affinity to disrupt cancer cells. In this study, we designed targeted and redox-responsive Melittin conjugates for cervical cancer and then tested them in vitro. Folic acid and squamous cell carcinoma-specific peptide (CKQNLAEG) were used as targeting agents to design various conjugates. Our findings indicate that both anticancer conjugates were effective against different cancer cell lines, including MCF-7, C33A, and HeLa. Moreover, these conjugates were found to have antioxidant and antibacterial effects as well as reduced hemolytic activity. The CM-Target (N-terminus cysteine modified-Melittin-targeting peptide-functionalized conjugate) has become more stable and acted specifically against squamous cell carcinoma, whereas folic acid (FA)-containing conjugates acted efficiently against all cancer types studied, especially for breast cancer. According to our results, these anticancer conjugates may be possible anticancer drug candidates that have fewer adverse effects.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Meliteno/farmacologia , Preparações Farmacêuticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células HeLa , Oxirredução , Carcinoma de Células Escamosas/tratamento farmacológico , Ácido Fólico , Linhagem Celular Tumoral
19.
J Nanobiotechnology ; 21(1): 245, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528426

RESUMO

Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN therapy is challenging. Here, we report a melittin-loaded and hyaluronic acid (HA)-conjugated high-density lipoprotein (HDL) mimic phospholipid scaffold nanoparticle (MLT-HA-HPPS), which dually-target to both breast cancer and its SLN and efficiently inhibit SLN metastasis in the LN metastasis model. The melittin peptide was successfully loaded onto HA-HPPS via electrostatic interactions, and MLT-HA-HPPS possesses effective cytotoxicity for breast cancer 4T1 cells. Moreover, the effective delivery of MLT-HA-HPPS from the primary tumor into SLN is monitored by NIR fluorescence imaging, which greatly benefits the prognosis and treatment of metastatic SLNs. After paracancerous administration, MLT-HA-HPPS can efficiently inhibit primary tumor growth with an inhibition rate of 81.3% and 76.5% relative to the PBS-treated control group and HA-HPPS group, respectively. More importantly, MLT-HA-HPPS can effectively inhibit the growth of the metastatic SLNs with an approximately 78.0%, 79.1%, and 64.2% decrease in SLNs weight than those in PBS, HA-HPPS, and melittin-treated mice, respectively. Taken together, the MLT-HA-HPPS may provide an encouraging theranostic of SLN drug delivery strategy to inhibit primary tumor progression and prevent SLN metastasis of breast cancer.


Assuntos
Nanopartículas , Linfonodo Sentinela , Camundongos , Animais , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela/métodos , Meliteno/farmacologia , Metástase Linfática/patologia , Linfonodos/patologia
20.
Medicine (Baltimore) ; 102(32): e34728, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565866

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a type of difficult-to-cure arthralgia with a worldwide prevalence. It severely affects people's living standards. For a long time, bee venom has been used to treat RA and has shown good results. Melittin is the main active component of bee venom used for RA treatment, but the molecular mechanism of melittin in RA treatments remains unclear. METHODS: Potential melittin and RA targets were obtained from relevant databases, and common targets of melittin and RA were screened. The STRING database was used to build the PPI network and screen the core targets after visualization. The core targets were enriched by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Finally, the binding of melittin to target proteins was evaluated through simulated molecular docking, which verified the reliability of the prediction results of network pharmacology. RESULTS: In total, 138 melittin targets and 5795 RA targets were obtained from relevant databases, and 90 common targets were obtained through intersection. Eighteen core targets, such as STAT3, AKT1, tumor necrosis factor, and JUN, were screened out. Enrichment analysis results suggested that melittin plays an anti-RA role mainly through tumor necrosis factor, interleukin-17, toll-like receptors, and advanced glycation end products-RAGE signaling pathways, and pathogenic bacterial infection. Molecular docking results suggested that melittin has good docking activity with core target proteins. CONCLUSION: RA treatment with melittin is the result of a multi-target and multi-pathway interaction. This study offers a theoretical basis and scientific evidence for further exploring melittin in RA therapy.


Assuntos
Artrite Reumatoide , Venenos de Abelha , Medicamentos de Ervas Chinesas , Humanos , Meliteno/farmacologia , Meliteno/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA