Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.527
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
2.
Int J Cancer ; 155(2): 352-364, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38483404

RESUMO

Treatment for higher-risk non-muscle invasive bladder cancer (NMIBC) involves intravesical immunotherapy with Bacillus Calmette Guérin (BCG); however, disease recurrence and progression occur frequently. Systemic immunity is critical for successful cancer immunotherapy; thus, recurrence of NMIBC may be due to suboptimal systemic activation of anti-tumor immunity after local immunotherapy. We previously reported that systemically acquired trained immunity (a form of innate immune memory) in circulating monocytes is associated with increased time-to-recurrence in patients with NMIBC treated with BCG. Herein, we used a mouse model of NMIBC to compare the effects of intravesical versus intravenous (systemic) BCG immunotherapy on the local and peripheral immune microenvironments. We also assessed whether BCG-induced trained immunity modulates anti-tumor immune responses. Compared with intravesical BCG, which led to a tumor-promoting immune microenvironment, intravenous BCG resulted in an anti-tumoral bladder microenvironment characterized by increased proportions of cytotoxic T lymphocytes (CTLs), and decreased proportions of myeloid-derived suppressor cells. Polarization toward anti-tumoral immunity occurred in draining lymph nodes, spleen, and bone marrow following intravenous versus intravesical BCG treatment. Pre-treatment with intravesical BCG was associated with increased rate of tumor growth compared with intravenous BCG pre-treatment. Trained immunity contributed to remodeling of the tumor immune microenvironment, as co-instillation of BCG-trained macrophages with ovalbumin-expressing bladder tumor cells increased the proportion of tumor-specific CTLs. Furthermore, BCG-trained dendritic cells exhibited enhanced antigen uptake and presentation and promoted CTL proliferation. Our data support the concept that systemic immune activation promotes anti-tumor responses, and that BCG-induced trained immunity is important in driving anti-tumor adaptive immunity.


Assuntos
Vacina BCG , Imunoterapia , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Microambiente Tumoral/imunologia , Camundongos , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Vacina BCG/uso terapêutico , Imunoterapia/métodos , Feminino , Administração Intravesical , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Humanos , Modelos Animais de Doenças , Imunidade Inata/imunologia , Linhagem Celular Tumoral , Memória Imunológica/imunologia , Células Supressoras Mieloides/imunologia , Imunidade Treinada
3.
Int J Cancer ; 155(2): 193-202, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554117

RESUMO

Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Células T de Memória , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Células T de Memória/imunologia , Memória Imunológica/imunologia , Animais
4.
Adv Sci (Weinh) ; 11(16): e2304501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386350

RESUMO

CD8+ T cells are critical for host antitumor responses, whereas persistent antigenic stimulation and excessive inflammatory signals lead to T cell dysfunction or exhaustion. Increasing early memory T cells can improve T cell persistence and empower T cell-mediated tumor eradication, especially for adoptive cancer immunotherapy. Here, it is reported that tumor-associated monocytes (TAMos) are highly correlated with the accumulation of CD8+ memory T cells in human cancers. Further analysis identifies that TAMos selectively reprogram CD8+ T cells into T central memory-like (TCM-like) cells with enhanced recall responses. L-NMMA, a pan nitric oxide synthase inhibitor, can mitigate TAMo-mediated inhibition of T cell proliferation without affecting TCM-like cell generation. Moreover, the modified T cells by TAMo exposure and L-NMMA treatment exhibit long-term persistence and elicit superior antitumor effects in vivo. Mechanistically, the transmembrane protein CD300LG is involved in TAMo-mediated TCM-like cell polarization in a cell-cell contact-dependent manner. Thus, the terminally differentiated TAMo subset (CD300LGhighACElow) mainly contributes to TCM-like cell development. Taken together, these findings establish the significance of TAMos in boosting T-cell antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Monócitos , Linfócitos T CD8-Positivos/imunologia , Camundongos , Animais , Monócitos/imunologia , Humanos , Células T de Memória/imunologia , Memória Imunológica/imunologia , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
5.
Nature ; 626(7998): 392-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086420

RESUMO

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Infecções por Paramyxoviridae , Sistema Respiratório , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Coletiva/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Células T de Memória/imunologia , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/virologia , Sistema Respiratório/citologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Transcrição Gênica , Humanos
6.
J Immunol ; 208(5): 1155-1169, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110421

RESUMO

CD8+ T cells are critical for the immune response to pathogens and tumors, and CD8+ T cell memory protects against repeat infections. In this study, we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of CD8+ T cell immune responses. Mice with a T cell-specific deletion of ATF7ip have a CD8+ T cell-intrinsic enhancement of Il7r expression and Il2 expression leading to enhanced effector and memory responses. Chromatin immunoprecipitation sequencing studies identified ATF7ip as a repressor of Il7r and Il2 gene expression through the deposition of the repressive histone mark H3K9me3 at the Il7r gene and Il2-Il21 intergenic region. Interestingly, ATF7ip targeted transposable elements for H3K9me3 deposition at both the IL7r locus and the Il2-Il21 intergenic region, indicating that ATF7ip silencing of transposable elements is important for regulating CD8+ T cell function. These results demonstrate a new epigenetic pathway by which IL-7R and IL-2 production are constrained in CD8+ T cells, and this may open up new avenues for modulating their production.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interleucina-2/biossíntese , Receptores de Interleucina-7/biossíntese , Proteínas Repressoras/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Imunoprecipitação da Cromatina , Elementos de DNA Transponíveis/genética , Deleção de Genes , Inativação Gênica , Histonas/genética , Humanos , Interleucina-2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Proteínas Repressoras/genética
7.
Front Immunol ; 13: 827250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154147

RESUMO

Recent evidence shows that innate immune cells, in addition to B and T cells, can retain immunological memory of their encounters and afford long-term resistance against infections in a process known as 'trained immunity'. However, the duration of the unspecific protection observed in vivo is poorly compatible with the average lifespan of innate immune cells, suggesting the involvement of long-lived cells. Accordingly, recent studies demonstrate that hematopoietic stem and progenitor cells (HSPCs) lay at the foundation of trained immunity, retaining immunological memory of infections and giving rise to a "trained" myeloid progeny for a long time. In this review, we discuss the research demonstrating the involvement of HSPCs in the onset of long-lasting trained immunity. We highlight the roles of specific cytokines and Toll-like receptor ligands in influencing HSPC memory phenotypes and the molecular mechanisms underlying trained immunity HSPCs. Finally, we discuss the potential benefits and drawbacks of the long-lasting trained immune responses, and describe the challenges that the field is facing.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Citocinas/imunologia , Humanos , Ligantes , Receptores Toll-Like/imunologia
8.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132966

RESUMO

The duodenum is a major site of HIV persistence during suppressive antiretroviral therapy despite harboring abundant tissue-resident memory (Trm) CD8+ T cells. The role of duodenal Trm CD8+ T cells in viral control is still not well defined. We examined the spatial localization, phenotype, and function of CD8+ T cells in the human duodenal tissue from people living with HIV (PLHIV) and healthy controls. We found that Trm (CD69+CD103hi) cells were the predominant CD8+ T cell population in the duodenum. Immunofluorescence imaging of the duodenal tissue revealed that CD103+CD8+ T cells were localized in the intraepithelial region, while CD103-CD8+ T cells and CD4+ T cells were mostly localized in the lamina propria (LP). Furthermore, HIV-specific CD8+ T cells were enriched in the CD69+CD103-/lo population. However, the duodenal HIV-specific CD8+ Trm cells rarely expressed canonical molecules for potent cytolytic function (perforin and granzyme B) but were more polyfunctional than those from peripheral blood. Taken together, our results show that duodenal CD8+ Trm cells possess limited perforin-mediated cytolytic potential and are spatially separated from HIV-susceptible LP CD4+ T cells. This could contribute to HIV persistence in the duodenum and provides critical information for the design of cure therapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Duodeno/imunologia , Infecções por HIV/imunologia , HIV , Memória Imunológica/imunologia , Adulto , Linfócitos T CD8-Positivos/patologia , Duodeno/metabolismo , Duodeno/patologia , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino
9.
Biomed Pharmacother ; 147: 112614, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995938

RESUMO

Post-Covid pulmonary fibrosis is evident following severe COVID-19. There is an urgent need to identify the cellular and pathophysiological characteristics of chronic lung squeals of Covid-19 for the development of future preventive and/or therapeutic interventions. Tissue-resident memory T (TRM) cells can mediate local immune protection against infections and cancer. Less beneficially, lung TRM cells cause chronic airway inflammation and fibrosis by stimulating pathologic inflammation. The effects of Janus kinase (JAK), an inducer pathway of cytokine storm, inhibition on acute Covid-19 cases have been previously evaluated. Here, we propose that Tofacitinib by targeting the CD8+ TRM cells could be a potential candidate for the treatment of chronic lung diseases induced by acute SARS-CoV-2 infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Tratamento Farmacológico da COVID-19 , Inibidores de Janus Quinases/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Subpopulações de Linfócitos T/imunologia , COVID-19/complicações , COVID-19/imunologia , Humanos , Memória Imunológica/imunologia , Pulmão/imunologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/imunologia , SARS-CoV-2 , Linfócitos T/imunologia
10.
J Immunol ; 208(2): 328-337, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34893527

RESUMO

T cells must shift their metabolism to respond to infections and tumors and to undergo memory formation. The ATP-binding cassette transporter ABCB10 localizes to the mitochondrial inner membrane, where it is thought to export a substrate important in heme biosynthesis and metabolism, but its role in T cell development and activation is unknown. In this article, we use a combination of methods to study the effect of ABCB10 loss in primary and malignantly transformed T cells. Although Abcb10 is dispensable for development of both CD4+ and CD8+ T cells, it is required for expression of specific cytokines in CD4+, but not CD8+, T cells activated in vitro. These defects in cytokine expression are magnified on repeated stimulation. In vivo, CD8+ cells lacking ABCB10 expand more in response to viral infection than their control counterparts, while CD4+ cells show reductions in both number and percentage. CD4+ cells lacking ABCB10 show impairment in Ag-specific memory formation and recall responses that become more severe with time. In malignant human CD4+ Jurkat T cells, we find that CRISPR-mediated ABCB10 disruption recapitulates the same cytokine expression defects upon activation as observed in primary mouse T cells. Mechanistically, ABCB10 deletion in Jurkat T cells disrupts the ability to switch to aerobic glycolysis upon activation. Cumulatively, these results show that ABCB10 is selectively required for specific cytokine responses and memory formation in CD4+ T cells, suggesting that targeting this molecule could be used to mitigate aberrant T cell activation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Memória Imunológica/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocinas/imunologia , Glicólise/fisiologia , Humanos , Memória Imunológica/genética , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Nat Immunol ; 23(2): 303-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949833

RESUMO

Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ferroptose/imunologia , Memória Imunológica/imunologia , Longevidade/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Animais , Glicogênio Sintase Quinase 3 beta/imunologia , Peroxidação de Lipídeos/imunologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos/métodos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/imunologia
12.
Front Immunol ; 12: 755304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867987

RESUMO

Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.


Assuntos
Inibidores de Checkpoint Imunológico/imunologia , Memória Imunológica/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico
13.
J Immunol ; 207(11): 2785-2798, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740960

RESUMO

Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.


Assuntos
Memória Imunológica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , beta-Glucanas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675067

RESUMO

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor. To this end, we designed DNA vaccines against known MeV cytotoxic and helper T epitopes, and administered these intradermally to mice that were subsequently challenged with syngeneic squamous cancer cells engineered to either express the cognate antigens or not. Alternatively, established wild-type tumors in vaccinated animals were treated intratumorally with in vitro transcribed mRNA encoding the cognate epitopes. Vaccination generated MeV cytotoxic T lymphocyte (CTL) immunity in mice as demonstrated by enhanced interferon gamma production, antigen-specific T cell proliferation, and CTL-mediated specific killing of antigen-pulsed target cells. When challenged with syngeneic tumor cells engineered to express the cognate antigens, 77% of MeV-vaccinated mice rejected the tumor versus 21% in control cohorts. Antitumor responses were largely dependent on the presence of CD8+ cells. Significant protection was observed even when only 25% of the tumor bulk expressed cognate antigens. We therefore tested the strategy therapeutically, allowing tumors to develop in vaccinated mice before intratumoral injection with Viromer nanoparticles complexed with mRNA encoding the cognate antigens. Treatment significantly enhanced overall survival compared with controls, including complete tumor regression in 25% of mice. Our results indicate that redirecting pre-existing viral immunity to fight cancer is a viable alternative that could meaningfully complement current cancer immune therapies such as personalized cancer vaccines and checkpoint inhibitor blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/imunologia , Memória Imunológica/imunologia , Vírus do Sarampo/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
15.
Front Immunol ; 12: 745332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671359

RESUMO

The induction of trained immunity represents an emerging concept defined as the ability of innate immune cells to acquire a memory phenotype, which is a typical hallmark of the adaptive response. Key points modulated during the establishment of trained immunity include epigenetic, metabolic and functional changes in different innate-immune and non-immune cells. Regarding to epigenetic changes, it has been described that long non-coding RNAs (LncRNAs) act as molecular scaffolds to allow the assembly of chromatin-remodeling complexes that catalyze epigenetic changes on chromatin. On the other hand, relevant metabolic changes that occur during this process include increased glycolytic rate and the accumulation of metabolites from the tricarboxylic acid (TCA) cycle, which subsequently regulate the activity of histone-modifying enzymes that ultimately drive epigenetic changes. Functional consequences of established trained immunity include enhanced cytokine production, increased antigen presentation and augmented antimicrobial responses. In this article, we will discuss the current knowledge regarding the ability of different cell subsets to acquire a trained immune phenotype and the molecular mechanisms involved in triggering such a response. This knowledge will be helpful for the development of broad-spectrum therapies against infectious diseases based on the modulation of epigenetic and metabolic cues regulating the development of trained immunity.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Vacina BCG/imunologia , Brônquios/citologia , Brônquios/imunologia , Citocinas/fisiologia , Metabolismo Energético , Epigênese Genética , Células Epiteliais/imunologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/imunologia , Células-Tronco Hematopoéticas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Celular/genética , Imunidade Celular/fisiologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Memória Imunológica/genética , Memória Imunológica/fisiologia , Linfócitos/imunologia , Camundongos , Células Mieloides/imunologia , NAD/fisiologia , Pele/citologia , Pele/imunologia
16.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643646

RESUMO

Emigration of tissue-resident memory T cells (TRMs) was recently introduced in mouse models and may drive systemic inflammation. Skin TRMs of patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) can coexist beside donor T cells, offering a unique human model system to study T cell migration. By genotyping, mathematical modeling, single-cell transcriptomics, and functional analysis of patient blood and skin T cells, we detected a small consistent population of circulating skin-derived T cells with a TRM phenotype (cTRMs) in the blood and unveil their skin origin and striking resemblance to skin TRMs. Blood from patients with active graft-versus-host disease (GVHD) contains elevated numbers of host cTRMs producing pro-inflammatory Th2/Th17 cytokines and mediating keratinocyte damage. Expression of gut-homing receptors and the occurrence of cTRMs in gastrointestinal GVHD lesions emphasize their potential to reseed and propagate inflammation in distant organs. Collectively, we describe a distinct circulating T cell population mirroring skin inflammation, which could serve as a biomarker or therapeutic target in GVHD.


Assuntos
Memória Imunológica/imunologia , Inflamação/imunologia , Pele/imunologia , Células Th2/imunologia , Animais , Citocinas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Queratinócitos/imunologia , Camundongos , Células Th17/imunologia , Transplante Homólogo/métodos
17.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622798

RESUMO

Hypomorphic RAG1 or RAG2 mutations cause primary immunodeficiencies and can lead to autoimmunity, but the underlying mechanisms are elusive. We report here a patient carrying a c.116+2T>G homozygous splice site mutation in the first intron of RAG1, which led to aberrant splicing and greatly reduced RAG1 protein expression. B cell development was blocked at both the pro-B to pre-B transition and the pre-B to immature B cell differentiation step. The patient B cells had reduced B cell receptor repertoire diversity and decreased complementarity determining region 3 lengths. Despite B cell lymphopenia, the patient had abundant plasma cells in the BM and produced large quantities of IgM and IgG Abs, including autoantibodies. The proportion of naive B cells was reduced while the frequency of IgD-CD27- double-negative (DN) B cells, which quickly differentiated into Ab-secreting plasma cells upon stimulation, was greatly increased. Immune phenotype analysis of 52 patients with primary immunodeficiency revealed a strong association of the increased proportion of DN B and memory B cells with decreased number and proportion of naive B cells. These results suggest that the lymphopenic environment triggered naive B cell differentiation into DN B and memory B cells, leading to increased Ab production.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/genética , Linfócitos B/imunologia , Granuloma/genética , Proteínas de Homeodomínio/genética , Síndromes de Imunodeficiência/genética , Linfopoese/genética , Receptores de Antígenos de Linfócitos B/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Criança , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Evolução Fatal , Granuloma/imunologia , Granuloma/terapia , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/terapia , Memória Imunológica/imunologia , Linfopenia/genética , Linfopenia/imunologia , Linfopoese/imunologia , Masculino , Plasmócitos/imunologia , Sítios de Splice de RNA/genética , Recombinação V(D)J/genética
18.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622805

RESUMO

Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P < 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.


Assuntos
Agamaglobulinemia/sangue , Imunodeficiência de Variável Comum/sangue , DNA Bacteriano/sangue , DNA Ribossômico/sangue , Microbioma Gastrointestinal/genética , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Inflamação/sangue , Adolescente , Adulto , Agamaglobulinemia/imunologia , Idoso , Anemia Hemolítica Autoimune/sangue , Anemia Hemolítica Autoimune/complicações , Anemia Hemolítica Autoimune/imunologia , Linfócitos B/imunologia , Translocação Bacteriana , Criança , Pré-Escolar , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/imunologia , DNA Bacteriano/imunologia , DNA Ribossômico/imunologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Granuloma/sangue , Granuloma/complicações , Granuloma/imunologia , Humanos , Switching de Imunoglobulina , Memória Imunológica/imunologia , Inflamação/imunologia , Interferon gama/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/imunologia , Masculino , Pessoa de Meia-Idade , Poliendocrinopatias Autoimunes/sangue , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/imunologia , Esplenomegalia/sangue , Esplenomegalia/complicações , Esplenomegalia/imunologia , Adulto Jovem
19.
Cells ; 10(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34571883

RESUMO

Tissue-resident memory T cells (TRM) comprise an important memory T cell subset that mediates local protection upon pathogen re-encounter. TRM populations preferentially localize at entry sites of pathogens, including epithelia of the skin, lungs and intestine, but have also been observed in secondary lymphoid tissue, brain, liver and kidney. More recently, memory T cells characterized as TRM have also been identified in tumors, including but not limited to melanoma, lung carcinoma, cervical carcinoma, gastric carcinoma and ovarian carcinoma. The presence of these memory T cells has been strongly associated with favorable clinical outcomes, which has generated an interest in targeting TRM cells to improve immunotherapy of cancer patients. Nevertheless, intratumoral TRM have also been found to express checkpoint inhibitory receptors, such as PD-1 and LAG-3. Triggering of such inhibitory receptors could induce dysfunction, often referred to as exhaustion, which may limit the effectiveness of TRM in countering tumor growth. A better understanding of the differentiation and function of TRM in tumor settings is crucial to deploy these memory T cells in future treatment options of cancer patients. The purpose of this review is to provide the current status of an important cancer immunotherapy known as TIL therapy, insight into the role of TRM in the context of antitumor immunity, and the challenges and opportunities to exploit these cells for TIL therapy to ultimately improve cancer treatment.


Assuntos
Memória Imunológica/imunologia , Imunoterapia Adotiva , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Antígenos CD/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
20.
Front Immunol ; 12: 674276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566953

RESUMO

Adoptive immunotherapy based on the transfer of anti-tumor cytotoxic T lymphocytes (CTLs) is a promising strategy to cure cancers. However, rapid expansion of numerous highly functional CTLs with long-lived features remains a challenge. Here, we constructed NIH/3T3 mouse fibroblast-based artificial antigen presenting cells (AAPCs) and precisely evaluated their ability to circumvent this difficulty. These AAPCs stably express the essential molecules involved in CTL activation in the HLA-A*0201 context and an immunogenic HLA-A*0201 restricted analogue peptide derived from MART-1, an auto-antigen overexpressed in melanoma. Using these AAPCs and pentamer-based magnetic bead-sorting, we defined, in a preclinical setting, the optimal conditions to expand pure MART-1-specific CTLs. Numerous highly purified MART-1-specific CTLs were rapidly obtained from healthy donors and melanoma patients. Both TCR repertoire and CDR3 sequence analyses revealed that MART-1-specific CTL responses were similar to those reported in the literature and obtained with autologous or allogeneic presenting cells. These MART-1-specific CTLs were highly cytotoxic against HLA-A*0201+ MART-1+ tumor cells. Moreover, they harbored a suitable phenotype for immunotherapy, with effector memory, central memory and, most importantly, stem cell-like memory T cell features. Notably, the cells harboring stem cell-like memory phenotype features were capable of self-renewal and of differentiation into potent effector anti-tumor T cells. These "off-the-shelf" AAPCs represent a unique tool to rapidly and easily expand large numbers of long-lived highly functional pure specific CTLs with stem cell-like memory T cell properties, for the development of efficient adoptive immunotherapy strategies against cancers.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Melanoma , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Antígeno MART-1/imunologia , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA