Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Integr Biol (Camb) ; 14(8-12): 171-183, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36573280

RESUMO

The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell-matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell-cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell-cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.


Assuntos
Iridoides , Túbulos Renais , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Iridoides/farmacologia , Iridoides/metabolismo , Membrana Basal/fisiologia , Células Epiteliais , Túbulos Renais Proximais
2.
Science ; 378(6616): 192-201, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227993

RESUMO

We engineered an ultrasensitive reporter of p16INK4a, a biomarker of cellular senescence. Our reporter detected p16INK4a-expressing fibroblasts with certain senescent characteristics that appeared shortly after birth in the basement membrane adjacent to epithelial stem cells in the lung. Furthermore, these p16INK4a+ fibroblasts had enhanced capacity to sense tissue inflammation and respond through their increased secretory capacity to promote epithelial regeneration. In addition, p16INK4a expression was required in fibroblasts to enhance epithelial regeneration. This study highlights a role for p16INK4a+ fibroblasts as tissue-resident sentinels in the stem cell niche that monitor barrier integrity and rapidly respond to inflammation to promote tissue regeneration.


Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Células Epiteliais , Fibroblastos , Genes Reporter , Pulmão , Regeneração , Nicho de Células-Tronco , Humanos , Membrana Basal/citologia , Membrana Basal/fisiologia , Biomarcadores/metabolismo , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Pulmão/patologia , Pulmão/fisiologia , Células Epiteliais/fisiologia , Nicho de Células-Tronco/fisiologia
3.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076391

RESUMO

Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.


Assuntos
Membrana Basal/patologia , Membrana Basal/fisiologia , Nefropatias/patologia , Rim/fisiologia , Organoides/fisiologia , Animais , Biópsia , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular , Pré-Escolar , Colágeno Tipo IV/genética , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Camundongos , Células-Tronco Pluripotentes/fisiologia , Proteômica/métodos
5.
Retina ; 42(2): 313-320, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723901

RESUMO

PURPOSE: To investigate the interrelationship among the outer retinal layers after macular hole surgery and elucidate the restoration process. METHODS: This retrospective observational study included 50 eyes of 47 consecutive patients with closed macular holes in the first vitrectomy. Optical coherence tomography was obtained before surgery; at 1, 3, and 6 months postsurgery; and at the last visit. The complete continuous layer rate and mean defect length were evaluated for the outer nuclear layer (ONL), external limiting membrane (ELM), and ellipsoid zone (EZ). RESULTS: At all postoperative visits, the complete continuous layer rate was in the descending order of ELM, ONL, and EZ and the mean defect length was in the ascending order of ELM, ONL, and EZ. External limiting membrane was necessary for ONL restoration. External limiting membrane and ONL were necessary for EZ restoration. Hyperreflective protrusions were observed from the area lacking ELM into the subretinal space after surgery. Ellipsoid zone was not formed in coexistence with the hyperreflective protrusions. Intermediate reflective protrusions appeared under the ONL plus ELM after surgery and were eventually replaced by EZ. CONCLUSION: Restoration of the outer retinal layers after surgical macular hole closure occurs in the order of ELM, ONL, and EZ.


Assuntos
Membrana Basal/fisiologia , Tamponamento Interno , Neurônios Retinianos/fisiologia , Perfurações Retinianas/cirurgia , Epitélio Pigmentado da Retina/fisiologia , Vitrectomia , Idoso , Membrana Basal/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Perfurações Retinianas/diagnóstico por imagem , Perfurações Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Estudos Retrospectivos , Hexafluoreto de Enxofre/administração & dosagem , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
6.
Ophthalmology ; 128(5): 672-685, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33045315

RESUMO

PURPOSE: To report the anatomic and functional outcomes of autologous retinal transplantation (ART). DESIGN: Multicenter, retrospective, interventional, consecutive case series. PARTICIPANTS: One hundred thirty eyes of 130 patients undergoing ART for the repair of primary and refractory macular holes (MHs), as well as combined MH-rhegmatogenous retinal detachment (MH-RRD), between January 2017 and December 2019. METHODS: All patients underwent pars plana vitrectomy and ART, with surgeon modification of intraoperative variables. A large array of preoperative, intraoperative, and postoperative data was collected. Two masked reviewers graded OCT images. Multivariate statistical analysis and subgroup analysis were performed. MAIN OUTCOME MEASURES: Macular hole closure rate, visual acuity (VA), external limiting membrane and ellipsoid zone (EZ) band integrity, and alignment of neurosensory layers (ANL) on OCT. RESULTS: One hundred thirty ART surgeries were performed by 33 vitreoretinal surgeons worldwide. Patient demographics were: mean age of 63 ± 6.3 years, 58% female, 41% White, 23% Black, 19% Asian, and 17% Latino. Preoperative VA was 1.37 ± 0.12 logarithm of the minimum angle of resolution (logMAR; Snellen equivalent, approximately 20/500), which improved significantly to 1.05 ± 0.09 logMAR (Snellen equivalent, approximately 20/225; P < 0.001) after surgery (mean follow-up, 8.6 ± 0.8 months). Autologous retinal transplantation was performed for primary MH repair in 27% of patients (n = 35), for refractory MH in 58% of patients (n = 76; mean number of previous surgeries, 1.6 ± 0.2), and for MH-RRD in 15% of patients (n = 19). Mean maximum MH diameter was 1470 ± 160 µm, mean minimum diameter was 840 ± 94 µm, and mean axial length was 24.6 ± 3.2 mm. Overall, 89% of MHs closed (78.5% complete; 10% small eccentric defect), with a 95% closure rate in MH-RRD (68.4% complete; 26.3% small eccentric defect). Visual acuity improved by at least 3 lines in 43% of eyes and by at least 5 lines in 29% of eyes. Reconstitution of the EZ (P = 0.02) and ANL (P = 0.01) on OCT were associated with better final VA. Five cases of ART graft dislocation (3.8%), 5 cases of postoperative retinal detachment (3.8%), and 1 case of endophthalmitis (0.77%) occurred. CONCLUSIONS: In this global experience, patients undergoing ART for large primary and refractory MHs and MH-RRDs achieved good anatomic and functional outcomes, with low complication rates despite complex surgical pathologic features.


Assuntos
Retina/transplante , Descolamento Retiniano/cirurgia , Perfurações Retinianas/cirurgia , Idoso , Membrana Basal/fisiologia , Feminino , Seguimentos , Saúde Global , Humanos , Masculino , Pessoa de Meia-Idade , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/fisiopatologia , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Transplante Autólogo , Resultado do Tratamento , Acuidade Visual/fisiologia , Vitrectomia
7.
Asian J Androl ; 23(2): 123-128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32896837

RESUMO

Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood-testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell-cell and also Sertoli-spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.


Assuntos
Membrana Basal/metabolismo , Barreira Hematotesticular/metabolismo , Colágeno Tipo IV/metabolismo , Fragmentos de Peptídeos/metabolismo , Epitélio Seminífero/metabolismo , Espermatogênese/fisiologia , Citoesqueleto de Actina , Animais , Membrana Basal/fisiologia , Barreira Hematotesticular/fisiologia , Comunicação Celular , Colágeno Tipo IV/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Fragmentos de Peptídeos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Epitélio Seminífero/fisiologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Transdução de Sinais , Espermátides/metabolismo , Espermátides/fisiologia , Testículo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Exp Eye Res ; 202: 108325, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263285

RESUMO

The purpose of this study was to investigate the expression and localization of transforming growth factor (TGF) ß1 and TGFß2 in rabbit corneas that healed with and without stromal fibrosis, and to further study defective perlecan incorporation in the epithelial basement membrane (EBM) in corneas with scarring fibrosis. A total of 120 female rabbits had no surgery, -4.5D PRK, or -9D PRK. Immunohistochemistry (IHC) was performed at time points from unwounded to eight weeks after surgery, with four corneas at each time point in each group. Multiplex IHC was performed for TGFß1 or TGFß2, with Image-J quantitation, and keratocan, vimentin, alpha-smooth muscle actin (SMA), perlecan, laminin-alpha 5, nidogen-1 or CD11b. Corneas at the four-week peak for myofibroblast and fibrosis development were evaluated using Imaris 3D analysis. Delayed regeneration of both an apical epithelial growth factor barrier and EBM barrier function, including defective EBM perlecan incorporation, was greater in high injury -9D PRK corneas compared to -4.5D PRK corneas without fibrosis. Defective apical epithelial growth factor barrier and EBM allowed epithelial and tear TGFß1 and tear TGFß2 to enter the corneal stroma to drive myofibroblast generation in the anterior stroma from vimentin-positive corneal fibroblasts, and likely fibrocytes. Vimentin-positive cells and unidentified vimentin-negative, CD11b-negative cells also produce TGFß1 and/or TGFß2 in the stroma in some corneas. TGFß1 and TGFß2 were at higher levels in the anterior stroma in the weeks preceding myofibroblast development in the -9D group. All -9D corneas (beginning two to three weeks after surgery), and four -4.5D PRK corneas developed significant SMA + myofibroblasts and stromal fibrosis. Both the apical epithelial growth factor barrier and/or EBM barrier functions tended to regenerate weeks earlier in -4.5D PRK corneas without fibrosis, compared to -4.5D or -9D PRK corneas with fibrosis. SMA-positive myofibroblasts were markedly reduced in most corneas by eight weeks after surgery. The apical epithelial growth factor barrier and EBM barrier limit TGFß1 and TGFß2 entry into the corneal stroma to modulate corneal fibroblast and myofibroblast development associated with scarring stromal fibrosis. Delayed regeneration of these barriers in corneas with more severe injuries promotes myofibroblast development, prolongs myofibroblast viability and triggers stromal scarring fibrosis.


Assuntos
Membrana Basal/fisiologia , Córnea/metabolismo , Substância Própria/patologia , Epitélio Corneano/fisiologia , Regeneração/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Substância Própria/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Proteínas de Membrana/metabolismo , Microscopia Confocal , Coelhos
9.
Methods Mol Biol ; 2184: 103-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808221

RESUMO

Three-dimensional (3D) cultures are better able to reflect the tumor microenvironment than two-dimensional (2D) monolayer cultures by facilitating cell-cell interactions in the appropriate spatial dimensions. Here I describe the isolation and co-culture of immune cells with tumor cell lines in a three-dimensional system facilitated by a basement membrane extract. This allows for further downstream applications to analyze interactions between these cell types.


Assuntos
Comunicação Celular/fisiologia , Técnicas de Cocultura/métodos , Linfócitos/fisiologia , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Membrana Basal/fisiologia , Linhagem Celular Tumoral , Humanos
10.
FASEB J ; 34(6): 8044-8056, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307751

RESUMO

Islet transplantation in man is limited by multiple factors including islet availability, islet cell damage caused by collagenase during isolation, maintenance of islet function between isolation and transplantation, and allograft rejection. In this study, we describe a new approach for preparing islets that enhances islet function in vitro and reduces immunogenicity. The approach involves culture on native decellularized 3D bone marrow-derived extracellular matrix (3D-ECM), which contains many of the matrix components present in pancreas, prior to islet transplantation. Compared to islets cultured on tissue culture plastic (TCP), islets cultured on 3D-ECM exhibited greater attachment, higher survival rate, increased insulin content, and enhanced glucose-stimulated insulin secretion. In addition, culture of islets on 3D-ECM promoted recovery of vascular endothelial cells within the islets and restored basement membrane-related proteins (eg, fibronectin and collagen type VI). More interestingly, culture on 3D-ECM also selectively decontaminated islets of "passenger" cells (co-isolated with the islets) and restored basement membrane-associated type VI collagen, which were associated with an attenuation in islet immunogenicity. These results demonstrate that this novel approach has promise for overcoming two major issues in human islet transplantation: (a) poor yield of islets from donated pancreas tissue and (b) the need for life-long immunosuppression.


Assuntos
Membrana Basal/fisiologia , Medula Óssea/fisiologia , Matriz Extracelular/fisiologia , Tolerância Imunológica/fisiologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/fisiologia , Animais , Membrana Basal/imunologia , Membrana Basal/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Colágeno Tipo VI/imunologia , Colágeno Tipo VI/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Fibronectinas/imunologia , Fibronectinas/metabolismo , Glucose/imunologia , Glucose/metabolismo , Tolerância Imunológica/imunologia , Insulina/imunologia , Insulina/metabolismo , Secreção de Insulina/imunologia , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Endogâmicos WF
11.
J Refract Surg ; 35(8): 506-516, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31393989

RESUMO

PURPOSE: To provide an overview of the importance of the coordinated role of the epithelial basement membrane (EBM) and Descemet's basement membrane (DBM) in modulating scarring (fibrosis) in the cornea after injuries, infections, surgeries, and diseases of the cornea. METHODS: Literature review. RESULTS: Despite their molecular and ultrastructural differences, the EBM and DBM act in a coordinated fashion to modulate the entry of transforming growth factor beta (TGF-ß) and other growth factors from the epithelium/tear film and aqueous humor, respectively, into the corneal stroma where persistent levels of these modulators trigger the development and persistence of myofibroblasts that produced disordered, opaque extracellular matrix not usually present in the corneal stroma. The development of these myofibroblasts and the extracellular matrix they produce is often detrimental to visual function of the cornea after penetrating keratoplasty, LASIK buttonhole flaps, persistent epithelial defects, microbial keratitis, Descemet stripping automated endothelial keratoplasty, or Descemet membrane endothelial keratoplasty, while being beneficial in other situations such as the scarred edge of LASIK flaps and donor-recipient interface in penetrating keratoplasty. Efforts to modulate the repair or replacement of the EBM and DBM, and thereby the development or disappearance of myofibroblasts, should be a major emphasis of treatments provided by refractive and corneal surgeries, infections, trauma, or diseases of the cornea. CONCLUSIONS: The EBM and DBM are critical modulators of the localization of profibrotic growth factors, such as TGF-ß, that modulate the development and persistence of myofibroblasts that produce corneal scars (stromal fibrosis). Therapeutic efforts to regenerate or repair EBM and/or DBM, and interfere with the development of myofibroblasts or facilitate their disappearance are often the key to clinical outcomes. [J Refract Surg. 2019;35(8):506-516.].


Assuntos
Membrana Basal/fisiologia , Córnea/patologia , Lesões da Córnea/fisiopatologia , Lâmina Limitante Posterior/fisiologia , Epitélio Corneano/fisiologia , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Fibrose , Humanos , Ceratomileuse Assistida por Excimer Laser In Situ , Ceratectomia Fotorrefrativa
12.
J Vis Exp ; (150)2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31449257

RESUMO

Tissue homeostasis and repair are critically dependent on the recruitment of monocyte-derived macrophages. Both under- and over-recruitment of monocyte-derived macrophages can impair wound healing. We showed that high fat and high sugar diets promote monocyte priming and dysfunction, converting healthy blood monocytes into a hyper chemotactic phenotype poised to differentiate into macrophages with dysregulated activation profiles and impaired phenotypic plasticity. The over-recruitment of monocyte-derived macrophages and recruitment of macrophages with dysregulated activation profiles is believed to be a major contributor to the development of chronic inflammatory diseases associated with metabolic disorders, including atherosclerosis and obesity. The goal of this protocol is to quantify the chemotactic activity of blood monocytes as a biomarker for monocyte priming and dysfunction and to characterize the macrophage phenotype blood monocytes are poised to differentiate into in these mouse models. Using single cell Western blot analysis, we show that after 24 h 33%of cells recruited into MCP-1-loaded basement membrane-derived gel plugs injected into mice are monocytes and macrophages; 58% after day 3. However, on day 5, monocyte and macrophage numbers were significantly decreased. Finally, we show that this assays also allows for the isolation of live macrophages from the surgically retrieved basement membrane-derived gel plugs, which can then be subjected to subsequent characterization by single cell Western blot analysis.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Quimiotaxia/fisiologia , Macrófagos/fisiologia , Monócitos/fisiologia , Animais , Membrana Basal/fisiologia , Contagem de Células/métodos , Quimiocina CCL2 , Camundongos , Fenótipo
13.
BMC Ophthalmol ; 19(1): 130, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208396

RESUMO

BACKGROUND: Nerve growth factor (NGF), produced by Müller cells, and internal limiting membrane (ILM) have fundamental roles in the development of full-thickness macular hole (FTMH). However, the potential crosstalk between NGF and ILM in FTMH is unclear. This study aimed to explore the mechanism and effects of NGF on the proliferation of Müller cells co-cultured with ILM. METHODS: Primary Müller cells and ILM from New Zealand rabbits were extracted and authenticated with specific staining. Müller cells co-cultured with or without ILM were exposed to NGF and then analysed. Müller cell viability was estimated using cell counting kit-8. Cell cycle analysis was performed by flow cytometry. The levels of cell cycle-related gene were detected using qRT-PCR. The TrK-A/Akt signal axis and downstream signaling cascades such as p21, CyclinE, CDK2, CyclinD1, and CDK4 were investigated by western blotting. RESULTS: ILM treatment alone induced the proliferation of Müller cells following the promotion of phosphorylated Akt, while growth of Müller cells was enhanced by activation of the Trk-A/Akt pathway under the stimulation of NGF or NGF + ILM. Additionally, the ratio of S-phase cells was increased, while G2-phase cells decreased upon the treatment with either ILM or NGF alone, or with NGF + ILM co-treatment. Cell cycle-related genes such as CyclinD1, CyclinE, CDK2, and CDK4 were all upregulated, but p21 expression was downregulated in the presence of NGF, ILM, or NGF + ILM. There was an additive effect on cell proliferation and cell cycle in the group of Müller cells exposed to NGF co-cultured with ILM compared with either NGF or ILM treatment alone. However, both K252ɑ (inhibitors of Trk-A) and LY294002 (inhibitor for Akt) counteracted the effect of NGF or NGF + ILM on the protein levels of Trk-A, Akt, CyclinD1, CyclinE, CDK2, and p21. CONCLUSIONS: Müller cells co-cultured with ILM or NGF promoted cell proliferation by regulating cell cycle-correlated proteins via the PI3K/Akt pathway. ILM + NGF further amplified the PI3K/Akt signaling pathway by binding to Trk-A, leading to more cell growth. This study provides new insight into the potential mechanism of NGF-mediated proliferation of Müller cells co-cultured with or without ILM, which may have considerable impact on therapies for FTMH.


Assuntos
Membrana Basal , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/fisiologia , Técnicas de Cocultura , Células Ependimogliais/citologia , Coelhos
14.
Plast Reconstr Surg ; 143(5): 983e-992e, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807494

RESUMO

BACKGROUND: Artificial dermis is an important option for preparing full-thickness wounds for cultured epithelial autografting. Long-term fragility after cultured epithelial autografting remains a problem, probably because of the lack of basement membrane proteins. The authors hypothesized that treating artificial dermis with mesenchymal stem cells would promote basement membrane protein production. The authors tested this using dedifferentiated fat cells in a porcine experimental model. METHODS: This study used four male crossbred (Landrace, Large White, and Duroc) swine. Cultured epithelium and dedifferentiated fat cells were prepared from skin and subcutaneous fat tissue harvested from the cervical region. Full-thickness open dorsal wounds were created and treated with artificial dermis to prepare a graft bed for cultured epithelial autograft. Two groups were established: the control group (artificial dermis treated with 0.5 ml of normal saline solution applied to the wounds) and the dedifferentiated fat group (artificial dermis treated with 0.5 × 10 dedifferentiated fat cells suspended in 0.5 ml of normal saline solution sprayed onto the wounds). On postoperative day 10, the prepared cultured epithelium was grafted onto the generated dermis-like tissue. Fourteen days later, tissue specimens were harvested and evaluated histologically. RESULTS: Light microscopy of hematoxylin and eosin-stained sections revealed the beginning of rete ridge formation in the dedifferentiated fat group. Synthesis of both collagen IV and laminin-5 was significantly enhanced in the dedifferentiated fat group. Transmission electron microscopy revealed a nearly mature basement membrane, including anchoring fibrils in the dedifferentiated fat group. CONCLUSION: Combined use of artificial dermis and dedifferentiated fat cells promotes post-cultured epithelial autograft production and deposition of basement membrane proteins at the dermal-epidermal junction and basement membrane development, including anchoring fibrils.


Assuntos
Epiderme/transplante , Transplante de Pele/métodos , Pele Artificial , Técnicas de Cultura de Tecidos/métodos , Células 3T3 , Adipócitos/fisiologia , Animais , Autoenxertos/transplante , Membrana Basal/fisiologia , Desdiferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Sus scrofa , Suínos , Transplante Autólogo/métodos
15.
Integr Biol (Camb) ; 10(11): 680-695, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295300

RESUMO

Improvements in the physiological relevance of cell-based assays have been enabled by the development of various interdisciplinary methods. However, due to their complexity, in vivo structures such as basement membranes (BMs), which regulate the phenotype of adherent cells, are still difficult to mimic in vitro. The reconstruction of a physiologically relevant BM is crucially important to develop cell-based assays with the capacity for drug screening and disease modelling. Here, we review the biophysical and biochemical properties of BMs in vivo and their interactions with neighbouring cells. We discuss the current methods used to mimic BM functions in cell-based assays according to the type of targeted applications. In doing so, we examine the advantages and limitations of each method as well as exploring approaches to improve the physiological relevance of engineered or cell-derived BMs in vitro.


Assuntos
Membrana Basal/fisiologia , Bioengenharia/métodos , Animais , Técnicas de Cocultura , Matriz Extracelular/química , Géis , Humanos , Laminina/química , Camundongos , Microscopia Eletrônica de Varredura , Peptídeos/química , Fenótipo , Polímeros/química , Polissacarídeos/química , Ratos , Alicerces Teciduais/química
16.
ACS Appl Mater Interfaces ; 10(47): 40388-40400, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30360091

RESUMO

In the past, significant effort has been made to develop ultrathin membranes exhibiting physiologically relevant mechanical properties, such as thickness and elasticity of native basement membranes. However, most of these fabricated membranes have a relatively high elastic modulus, ∼MPa-GPa, relevant only to retinal and epithelial basement membranes. Vascular basement membranes exhibiting relatively low elastic modulus, ∼kPa, on the contrary, have seldom been mimicked. Membranes demonstrating high compliance, with moduli ranging in ∼kPa along with sub-microscale thicknesses have rarely been reported, and would be ideal to mimic vascular basement membranes in vitro. To address this, we fabricate ultrathin membranes demonstrating the mechanistic features exhibited by their vascular biological counterparts. Salient features of the fabricated ultrathin membranes include free suspension, physiologically relevant thickness ∼sub-micrometers, relatively low modulus ∼kPa, and sufficiently large culture area ∼20 mm2. To fabricate such ultrathin membranes, undiluted PDMS Sylgard 527 was utilized as opposed to the conventional diluted polymer-solvent mixture approach. In addition, the necessity to have a sacrificial layer for releasing membranes from the underlying substrates was also eliminated in our approach. The novelty of our work lies in achieving the distinct combination of membranes having thickness in sub-micrometers and the associated elasticity in kilopascal using undiluted polymer, which past approaches with dilution have not been able to accomplish. The ultrathin membranes with average thickness of 972 nm (thick) and 570 nm (thin) were estimated to have an elastic modulus of 45 and 214 kPa, respectively. Contact angle measurements revealed the ultrathin membranes exhibited hybrophobic characteristics in unpeeled state and transformed to hydrophilic behavior when freely suspended. Human umbilical vein endothelial cells were cultured on the polymeric ultrathin membranes, and the temporal cell response to change in local compliance of the membranes was studied by evaluating the cell spread area, density, percentage area coverage, and spread rate. After 24 h, single cells, pairs, and group of three to four cells were noticed on highly compliant thick membranes, having average thickness of 972 nm and modulus of 45 kPa. On the contrary, the cell monolayer was noted on the glass slide acting as a control. For the thin membranes featuring average thickness of 570 nm and modulus of 214 kPa, the cells tend to exhibit response similar to that on control with initiation of monolayer formation. Our results indicate, the local compliance, in turn, the membrane thickness governs the cell behavior and this can have vital implications during disease initiation and progression, wound healing, and cancer cell metastasis.


Assuntos
Membrana Basal/fisiologia , Dimetilpolisiloxanos/química , Células Endoteliais da Veia Umbilical Humana/fisiologia , Membranas Artificiais , Adsorção , Módulo de Elasticidade , Fibronectinas/metabolismo , Humanos , Reprodutibilidade dos Testes , Fatores de Tempo , Molhabilidade
17.
Integr Biol (Camb) ; 10(9): 555-565, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30140833

RESUMO

A critical role of vascular endothelium is as a semi-permeable barrier, dynamically regulating the flux of solutes between blood and the surrounding tissue. Existing platforms that quantify endothelial function in vitro are either significantly throughput limited or overlook physiologically relevant extracellular matrix (ECM) interactions and thus do not recapitulate in vivo function. Leveraging droplet microfluidics, we developed a scalable platform to measure endothelial function in nanoliter-volume, ECM-based microtissues. In this study, we describe our high-throughput method for fabricating endothelial-coated collagen microtissues that incorporate physiologically relevant cell-ECM interactions. We showed that the endothelial cells had characteristic morphology, expressed tight junction proteins, and remodeled the ECM via compaction and deposition of basement membrane. We also measured macromolecular permeability using two optical modalities, and found the cell layers: (1) had permeability values comparable to in vivo measurements and (2) were responsive to physiologically-relevant modulators of endothelial permeability (TNF-α and TGF-ß). This is the first demonstration, to the authors' knowledge, of high-throughput assessment (n > 150) of endothelial permeability on natural ECM. Additionally, this technology is compatible with standard cell culture equipment (e.g. multi-well plates) and could be scaled up further to be integrated with automated liquid handling systems and automated imaging platforms. Overall, this platform recapitulates the functions of traditional transwell inserts, but extends application to high-throughput studies and introduces new possibilities for interrogating cell-cell and cell-matrix interactions.


Assuntos
Técnicas de Cultura de Células/métodos , Endotélio Vascular/fisiologia , Matriz Extracelular/fisiologia , Animais , Anisotropia , Membrana Basal/fisiologia , Comunicação Celular , Células Cultivadas , Células Endoteliais/citologia , Substâncias Macromoleculares , Microfluídica , Permeabilidade , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Curr Top Dev Biol ; 130: 143-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853176

RESUMO

The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.


Assuntos
Membrana Basal/fisiologia , Doença/etiologia , Crescimento e Desenvolvimento/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento , Matriz Extracelular/fisiologia , Humanos , Vertebrados/crescimento & desenvolvimento
19.
J Am Heart Assoc ; 7(21): e009193, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30608207

RESUMO

Background Patients with atherosclerosis have a high risk of cardiovascular events and death. Atherosclerosis is characterized by accumulation of lipids, cells and extracellular matrix proteins in the intima. We hypothesized that dysregulated remodeling of the basement membrane proteins may be associated with clinical outcomes in patients with atherosclerosis. Methods and Results Neoepitope fragments of collagen type IV (C4M) and laminin ( LG 1M) were assessed by ELISA s in serum from 787 endarterectomy patients. Matrix metalloproteinase s were measured using proximity extension assay and correlated to C4M and LG 1M levels using Spearman correlations. A total of 473 patients were followed up for 6 years using national registers, medical charts, and telephone interviews. The incidence of cardiovascular events, cardiovascular mortality, and all-cause mortality were associated to levels of C4M and LG 1M using Kaplan-Meier curves and Cox regression analyses. A total of 101 patients had cardiovascular events, 39 died of cardiovascular mortality, and 64 patients died from all-cause mortality. C4M levels were increased in patients with symptomatic carotid atherosclerotic disease before surgery ( P=0.048). High C4M and LG 1M levels were associated with increased risk of all-cause mortality ( P=0.020 and 0.031, respectively) and predicted all-cause death together with glomerular filtration rate and diabetes mellitus. Conclusions High LG 1M and C4M levels were associated with all-cause mortality, together with glomerular filtration rate and diabetes mellitus. These novel biomarkers need further evaluation but might be tools to identify high-risk patients.


Assuntos
Aterosclerose/sangue , Aterosclerose/mortalidade , Membrana Basal/fisiologia , Colágeno Tipo IV/sangue , Laminina/sangue , Remodelação Vascular , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino
20.
Curr Biol ; 27(22): 3526-3534.e4, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29129537

RESUMO

The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.


Assuntos
Membrana Basal/fisiologia , Matriz Extracelular/metabolismo , Animais , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/fisiologia , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA