Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Otolaryngol Head Neck Surg ; 49(1): 2, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907040

RESUMO

BACKGROUND: Despite significant anatomical variation amongst patients, cochlear implant frequency-mapping has traditionally followed a patient-independent approach. Basilar membrane (BM) length is required for patient-specific frequency-mapping, however cochlear duct length (CDL) measurements generally extend to the apical tip of the entire cochlea or have no clearly defined end-point. By characterizing the length between the end of the BM and the apical tip of the entire cochlea (helicotrema length), current CDL models can be corrected to obtain the appropriate BM length. Synchrotron radiation phase-contrast imaging has made this analysis possible due to the soft-tissue contrast through the entire cochlear apex. METHODS: Helicotrema linear length and helicotrema angular length measurements were performed on synchrotron radiation phase-contrast imaging data of 14 cadaveric human cochleae. On a sub-set of six samples, the CDL to the apical tip of the entire cochlea (CDLTIP) and the BM length (CDLBM) were determined. Regression analysis was performed to assess the relationship between CDLTIP and CDLBM. RESULTS: The mean helicotrema linear length and helicotrema angular length values were 1.6 ± 0.9 mm and 67.8 ± 37.9 degrees, respectively. Regression analysis revealed the following relationship between CDLTIP and CDLBM: CDLBM = 0.88(CDLTIP) + 3.71 (R2 = 0.995). CONCLUSION: This is the first known study to characterize the length of the helicotrema in the context of CDL measurements. It was determined that the distance between the end of the BM and the tip of the entire cochlea is clinically consequential. A relationship was determined that can predict the BM length of an individual patient based on their respective CDL measured to the apical tip of the cochlea.


Assuntos
Membrana Basilar/anatomia & histologia , Ducto Coclear/anatomia & histologia , Variação Anatômica , Membrana Basilar/diagnóstico por imagem , Cadáver , Ducto Coclear/diagnóstico por imagem , Implante Coclear , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia de Contraste de Fase , Síncrotrons
2.
Ear Hear ; 40(2): 393-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29952804

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN: Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS: Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS: Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.


Assuntos
Membrana Basilar/diagnóstico por imagem , Implante Coclear , Janela da Cóclea/diagnóstico por imagem , Membrana Basilar/patologia , Cadáver , Cóclea/diagnóstico por imagem , Cóclea/patologia , Implantes Cocleares , Humanos , Imageamento Tridimensional , Microscopia de Contraste de Fase , Janela da Cóclea/patologia , Síncrotrons , Microtomografia por Raio-X
3.
Eur Arch Otorhinolaryngol ; 275(7): 1723-1729, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29799084

RESUMO

PURPOSE: To evaluate the insertion characteristics and trauma of a new slim lateral wall electrode (SlimJ) in human temporal bones (TB). METHODS: Pre- and postoperative assessment was performed using cone beam computed tomography (CBCT) and image fusion in 11 human TB. The position of the array in each cochlea was analyzed and described using a vertical scaling factor, calculated by dividing the distance of the scala tympani floor to the centre of the electrode by the duct height. Insertion trauma was scaled according to the presumed localization of the basilar membrane, which was modeled from histologic sections of 20 TBs. The insertion trauma was described by the adaptation of the Eshragi trauma grading. RESULTS: A full electrode insertion, via the round window, was achieved in all TBs. Surgical handling was good, with a favorable compromise between high flexibility but sufficient stiffness to facilitate smooth insertions. The median angular insertion depth was 368° (range 330°-430°). Scala tympani placement was achieved in ten out of eleven TBs; in one TB a scala translocation was observed, occurring at approximately 180°. CONCLUSIONS: The SlimJ showed atraumatic insertion characteristics. The CBCT fusion technique provides an accurate and reliable assessment of the electrode position and allows for grading insertion trauma without histology. The SlimJ true potential for structure and hearing preservation needs to be further assessed in vivo.


Assuntos
Implante Coclear , Implantes Cocleares , Eletrodos Implantados , Osso Temporal/diagnóstico por imagem , Membrana Basilar/diagnóstico por imagem , Cadáver , Tomografia Computadorizada de Feixe Cônico , Desenho de Equipamento , Humanos , Janela da Cóclea/cirurgia , Rampa do Tímpano/diagnóstico por imagem , Rampa do Tímpano/cirurgia , Osso Temporal/cirurgia
4.
Ups J Med Sci ; 123(1): 9-18, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29537931

RESUMO

OBJECTIVE: We used synchrotron radiation phase contrast imaging (SR-PCI) to study the 3D microanatomy of the basilar membrane (BM) and its attachment to the spiral ligament (SL) (with a conceivable secondary spiral lamina [SSL] or secondary spiral plate) at the round window membrane (RWM) in the human cochlea. The conception of this complex anatomy may be essential for accomplishing structural preservation at cochlear implant surgery. MATERIAL AND METHODS: Sixteen freshly fixed human temporal bones were used to reproduce the BM, SL, primary and secondary osseous spiral laminae (OSL), and RWM using volume-rendering software. Confocal microscopy immunohistochemistry (IHC) was performed to analyze the molecular constituents. RESULTS: SR-PCI reproduced the soft tissues including the RWM, Reissner's membrane (RM), and the BM attachment to the lateral wall (LW) in three dimensions. A variable SR-PCI contrast enhancement was recognized in the caudal part of the SL facing the scala tympani (ST). It seemed to represent a SSL allied to the basilar crest (BC). The SSL extended along the postero-superior margin of the round window (RW) and immunohistochemically expressed type II collagen. CONCLUSIONS: Unlike in several mammalian species, the human SSL is restricted to the most basal portion of the cochlea around the RW. It anchors the BM and may influence its hydro-mechanical properties. It could also help to shield the BM from the RW. The microanatomy should be considered at cochlear implant surgery.


Assuntos
Implante Coclear/métodos , Lâmina Espiral/diagnóstico por imagem , Membrana Basilar/anatomia & histologia , Membrana Basilar/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Janela da Cóclea/anatomia & histologia , Janela da Cóclea/diagnóstico por imagem , Lâmina Espiral/anatomia & histologia
5.
Eur Arch Otorhinolaryngol ; 271(4): 673-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23536136

RESUMO

Postoperative imaging plays a growing role in clinical studies concerning prognostic factors in cochlear implantation. Indeed, intracochlear position of the cochlear implant has recently been identified as a contributor in functional outcomes and radiological tools must be accurate enough to determine the final placement of the electrode array. The aim of our study was to validate cone beam computed tomography as a reliable technique for scalar localization of the electrode array. We performed therefore a temporal bone study on ten specimens that were implanted with a perimodiolar implant prototype. Cone beam reconstructions were performed and images were analyzed by two physicians both experienced in cochlear implant imaging, who determined the scalar localization of the implant. Temporal bones then underwent histological control to document this scalar localization and hypothetical intracochlear lesions. In four cases, a dislocation from scala tympani to scala vestibuli was suspected on cone beam reconstructions of the ascending part of the basal turn. In three of these four specimens, dislocation in pars ascendens was confirmed histologically. In the remaining temporal bone, histological analysis revealed an elevation with rupture of the basilar membrane. Histological assessment revealed spiral ligament tearing in another bone. We conclude that cone beam is a reliable tool to assess scalar localization of the selectrode array and may be used in future clinical studies.


Assuntos
Membrana Basilar/diagnóstico por imagem , Implantes Cocleares , Falha de Prótese , Rampa do Tímpano/diagnóstico por imagem , Osso Temporal/diagnóstico por imagem , Membrana Basilar/patologia , Cóclea/diagnóstico por imagem , Cóclea/patologia , Implante Coclear , Tomografia Computadorizada de Feixe Cônico , Eletrodos Implantados , Humanos , Modelos Anatômicos , Reprodutibilidade dos Testes , Rampa do Tímpano/patologia , Osso Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA