Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.649
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625405

RESUMO

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Assuntos
Adenilil Ciclases , Membrana Eritrocítica , Recuperação de Fluorescência Após Fotodegradação , Fluidez de Membrana , Adenilil Ciclases/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Humanos , Membrana Eritrocítica/metabolismo , Ativação Enzimática , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/farmacologia , Epinefrina/metabolismo
2.
Maturitas ; 184: 107948, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447232

RESUMO

OBJECTIVE: Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN: 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME: The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS: A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION: Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.


Assuntos
Suplementos Nutricionais , Membrana Eritrocítica , Ácidos Graxos Ômega-3 , Óleos de Peixe , Hemoglobinas , Homeostase , Ferro , Obesidade , Redução de Peso , Humanos , Feminino , Pessoa de Meia-Idade , Ácidos Graxos Ômega-3/administração & dosagem , Obesidade/dietoterapia , Obesidade/complicações , Obesidade/sangue , Obesidade/metabolismo , Óleos de Peixe/administração & dosagem , Ferro/sangue , Ferro/metabolismo , Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/análise , Dieta Redutora , Adulto , Restrição Calórica , Fosfolipídeos/sangue
3.
Biomolecules ; 14(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397451

RESUMO

The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas do Citoesqueleto/metabolismo , Espectrina/química , Espectrina/genética , Espectrina/metabolismo , Actinas/metabolismo , Membrana Eritrocítica/metabolismo
4.
Int J Biol Macromol ; 255: 128354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995795

RESUMO

Polyethylenimine (PEI) is a broadly exploited cationic polymer due to its remarkable gene-loading capacity. However, the high cytotoxicity caused by its high surface charge density has been reported in many cell lines, limiting its application significantly. In this study, two different molecular weights of PEI (PEI10k and PEI25k) were crosslinked with red blood cell membranes (RBCm) via disulfide bonds to form PEI derivatives (RMPs) with lower charge density. Furthermore, the targeting molecule folic acid (FA) molecules were further grafted onto the polymers to obtain FA-modified PEI-RBCm copolymers (FA-RMP25k) with tumor cell targeting and glutathione response. In vitro experiments showed that the FA-RMP25k/DNA complex had satisfactory uptake efficiency in both HeLa and 293T cells, and did not cause significant cytotoxicity. Furthermore, the uptake and transfection efficiency of the FA-RMP25k/DNA complex was significantly higher than that of the PEI25k/DNA complex, indicating that FA grafting can increase transfection efficiency by 15 %. These results suggest that FA-RMP25k may be a promising non-viral gene vector with potential applications in gene therapy.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina , Humanos , Membrana Celular/metabolismo , DNA/química , Terapia Genética/métodos , Glutationa/genética , Células HeLa , Polietilenoimina/química , Polímeros/química , Transfecção , Ácido Fólico/química , Membrana Eritrocítica/metabolismo
5.
ACS Appl Mater Interfaces ; 15(50): 58067-58078, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056905

RESUMO

Recently, cell membrane camouflaged nanoparticles (NPs) endowed with natural cellular functions have been extensively studied in various biomedical fields. However, there are few reports about such biomimetic NPs used to codeliver chemodrug and genes for synergistic cancer treatment up to now. Herein, we first prepare chemodrug-gene nanoparticles (Mito-Her2 NPs) by the electrostatic interaction coself-assembly of mitoxantrone hydrochloride (Mito) and human epidermal growth factor receptor-2 antisense oligonucleotide (Her2 ASO). Then, Mito-Her2 NPs are coated by a hybrid membrane (RSHM), consisting of the red blood cell membrane (RBCM) and the SKOV3 ovarian cancer cell membrane (SCM), to produce biomimetic chemodrug-gene nanoparticles (Mito-Her2@RSHM NPs) for combination therapy of ovarian cancer. Mito-Her2@RSHM NPs integrate the advantages of RBCM (e.g., good immune evasion capability and long circulation lifetime in the blood) and SCM (e.g., highly specific cognate recognition) together and improve the anticancer efficacy of Mito-Her2 NPs. The results show that Mito-Her2@RSHM NPs can be devoured by SKOV3 ovarian cancer cells and effectively degraded to release Her2 ASOs and Mito simultaneously. Her2 ASOs can inhibit the expression of endogenous Her2 genes and recover cancer cells' sensitivity to Mito, which ultimately led to a high apoptosis rate of 75.7% in vitro. Mito-Her2@RSHM NPs also show a high tumor suppression rate of 83.33 ± 4.16% in vivo without significant damage to normal tissues. In summary, Mito-Her2@RSHM NPs would be expected as a versatile and safe nanodrug delivery platform with high efficiency for chemo-gene combined cancer treatment.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Membrana Eritrocítica/metabolismo , Apoptose , Mitomicina , Nanopartículas/uso terapêutico
6.
ACS Macro Lett ; 12(11): 1583-1588, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937586

RESUMO

Hydrogen sulfide (H2S) is an important gaseous signaling molecule with unique pleiotropic pharmacological effects, but may be limited for clinical translation due to the lack of a reliable delivery form that delivers exogenous H2S to cells at action site with precisely controlled dosage. Herein, we report the design of a poly(thiourethane) (PTU) self-immolative polymer terminally caged with an acrylate moiety to trigger release of H2S in response to cysteine (Cys) and homocysteine (Hcy), the most used and independent indicators of neurodegenerative diseases. The synthesized PTU polymer was then coated with the red-blood-cell (RBC) membrane in the presence of solubilizing agent to self-assemble into nanoparticles with enhanced stability and cytocompatibility. The Hcy/Cys mediated addition/cyclization chemistry actuated the biomimetic polymeric nanoparticles to disintegrate into carbonyl sulfide (COS), and finally convert into H2S via the ubiquitous carbonic anhydrase (CA). H2S released in a controlled manner exhibited a strong antioxidant ability to resist Alzheimer's disease (AD)-related oxidative stress factors in BV-2 cells, a neurodegenerative disease model in vitro. Thus, this work may provide an effective strategy to construct H2S donors that can degrade in response to a specific pathological microenvironment for the treatment of neurodegenerative diseases.


Assuntos
Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Humanos , Cisteína , Sulfeto de Hidrogênio/química , Membrana Eritrocítica/metabolismo , Polímeros
7.
Sci Rep ; 13(1): 12883, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558717

RESUMO

The aim of the study is to investigate the differences in the interaction of three structurally diverse anthocyanidins, namely peonidin, petunidin, and delphinidin, as well as their glucosides with model biological membranes, human albumin, and plasmid DNA in order to look into their structure-activity relationships. Fluorimetric studies, as well as ATR-FTIR analyses, were jointly used in order to determine the changes observed in both the hydrophilic and hydrophobic layers of cell-mimic membranes (MM) which reflected the membrane lipid composition of tumour cells and red blood cell membranes (RBCM). Our results showed that anthocyanins and anthocyanidins can cause an increase in the packing order of the polar heads of lipids, as well as interact with their deeper layers by reducing the fluidity of lipid chains. The results presented here indicate that all compounds tested here possessed the ability to bind to human serum albumin (HSA) and the presence of a glucose molecule within the structures formed by anthocyanidin reduces their ability to bind to proteins. Using fluorescence correlation spectroscopy, it was demonstrated that the compounds tested here were capable of forming stable complexes with plasmid DNA and, particularly, strong DNA conformational changes were observed in the presence of petunidin and corresponding glucoside, as well as delphinidin. The results we obtained can be useful in comprehending the anthocyanins therapeutic action as molecular antioxidants and provide a valuable insight into their mechanism of action.


Assuntos
Antocianinas , Glucosídeos , Humanos , Antocianinas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/química , Membrana Eritrocítica/metabolismo , Albumina Sérica Humana , DNA , Plasmídeos/genética
8.
Int J Pharm ; 643: 123241, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37479101

RESUMO

Multiple myeloma (MM) is a malignant and incurable disease. Chemotherapy is currently the primary treatment option for MM. However, chemotherapeutic drugs can interrupt treatment because of serious side effects. Therefore, development of novel therapeutics for MM is essential. In this study, we designed and constructed an innovative nanoparticle-based drug delivery system, P-R@Ni3P-BTZ, and investigated its feasibility, effectiveness, and safety both in vitro and in vivo. P-R@Ni3P-BTZ is a nanocomposite that consists of two parts: (1) the drug carrier (Ni3P), which integrates photothermal therapy (PTT) with chemotherapy by loading bortezomib (BTZ); and (2) the shell (P-R), a CD38 targeting peptide P-modified red blood cell membrane nanovesicles. In vitro and in vivo, it was proven that P-R@Ni3P-BTZ exhibits remarkable antitumor effects by actively targeting CD38 + MM cells. P-R@Ni3P-BTZ significantly induces the accumulation of intracellular reactive oxygen species (ROS) and increases the apoptosis of MM cells, which underlies the primary mechanism of its antitumor effects. In addition, P-R@Ni3P exhibits good biocompatibility and biosafety, both in vitro and in vivo. Overall, P-R@Ni3P-BTZ is a specific and efficient MM therapeutic method.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Nanopartículas , Humanos , Apoptose , Bortezomib , Linhagem Celular Tumoral , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Nanopartículas/administração & dosagem
9.
Blood Cells Mol Dis ; 103: 102778, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379758

RESUMO

Nineteen reports of 41 cases of acquired red cell elliptocytosis associated with a chronic myeloid neoplasm are described. Although the majority of cases have an abnormality of the long arm of chromosome 20, del(q20), several cases do not. Moreover, in one case a specific qualitative abnormality of red cell protein band 4.1(4.1R) was reported; however, several subsequent cases could find no abnormality of a red cell membrane protein or found a different abnormality, usually quantitative. Thus, this striking red cell phenotypic feature, acquired elliptocytosis, seen in myelodysplastic syndrome and other chronic myeloproliferative diseases, closely simulating the red cell phenotype of hereditary elliptocytosis, has an unexplained genetic basis, presumably as the result of an acquired mutation(s) in some chronic myeloid neoplasms.


Assuntos
Eliptocitose Hereditária , Transtornos Mieloproliferativos , Neoplasias , Humanos , Eliptocitose Hereditária/complicações , Eliptocitose Hereditária/genética , Proteínas de Membrana/genética , Neoplasias/metabolismo , Eritrócitos/metabolismo , Membrana Eritrocítica/metabolismo , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Proteínas do Citoesqueleto/genética
10.
Adv Mater ; 35(39): e2304123, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339776

RESUMO

Excessive inflammatory reactions caused by uric acid deposition are the key factor leading to gout. However, clinical medications cannot simultaneously remove uric acid and eliminate inflammation. An M2 macrophage-erythrocyte hybrid membrane-camouflaged biomimetic nanosized liposome (USM[H]L) is engineered to deliver targeted self-cascading bienzymes and immunomodulators to reprogram the inflammatory microenvironment in gouty rats. The cell-membrane-coating endow nanosomes with good immune escape and lysosomal escape to achieve long circulation time and intracellular retention times. After being uptaken by inflammatory cells, synergistic enzyme-thermo-immunotherapies are achieved: uricase and nanozyme degraded uric acid and hydrogen peroxide, respectively; bienzymes improved the catalytic abilities of each other; nanozyme produced photothermal effects; and methotrexate has immunomodulatory and anti-inflammatory effects. The uric acid levels markedly decrease, and ankle swelling and claw curling are effectively alleviated. The levels of inflammatory cytokines and ROS decrease, while the anti-inflammatory cytokine levels increase. Proinflammatory M1 macrophages are reprogrammed to the anti-inflammatory M2 phenotype. Notably, the IgG and IgM levels in USM[H]L-treated rats decrease substantially, while uricase-treated rats show high immunogenicity. Proteomic analysis show that there are 898 downregulated and 725 upregulated differentially expressed proteins in USM[H]L-treated rats. The protein-protein interaction network indicates that the signaling pathways include the spliceosome, ribosome, purine metabolism, etc.


Assuntos
Urato Oxidase , Ácido Úrico , Ratos , Animais , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Urato Oxidase/metabolismo , Urato Oxidase/farmacologia , Biomimética , Proteômica , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Membrana Eritrocítica/metabolismo , Imunoterapia
11.
ACS Appl Mater Interfaces ; 15(19): 22843-22853, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133278

RESUMO

Cancer nanomedicine treatment aims to achieve highly specific targeting and localization to cancer cells. Coating of nanoparticles with cell membranes endows them with homologous cellular mimicry, enabling nanoparticles to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused a human-derived HCT116 colon cancer cell membrane (cM) with a red blood cell membrane (rM) to fabricate an erythrocyte-cancer cell hybrid membrane (hM). Oxaliplatin and chlorin e6 (Ce6) co-encapsulated reactive oxygen species-responsive nanoparticles (NPOC) were camouflaged by hM and obtained a hybrid biomimetic nanomedicine (denoted as hNPOC) for colon cancer therapy. hNPOC exhibited prolonged circulation time and recognized homologous targeting ability in vivo since both rM and HCT116 cM proteins were maintained on the hNPOC surface. hNPOC showed enhanced homologous cell uptake in vitro and considerable homologous self-localization in vivo, producing effective synergistic chemophotodynamic therapy efficacy under irradiation with a homologous HCT116 tumor compared to that with a heterologous tumor. Together, the biomimetic hNPOC nanoparticles showed prolonged blood circulation and preferential cancer cell-targeted function in vivo to provide a bioinspired strategy for chemophotodynamic synergistic therapy of colon cancer.


Assuntos
Neoplasias do Colo , Nanopartículas , Humanos , Biônica , Membrana Eritrocítica/metabolismo , Fototerapia , Neoplasias do Colo/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
12.
Small Methods ; 7(6): e2201548, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36914575

RESUMO

Cell membrane-cloaked nanoparticles are exploited as a promising drug carrier to enhance circulation, accumulation, penetration into tumor sites and cellular internalization. However, the effect of physicochemical properties (e.g., size, surface charge, shape, and elasticity) of cell membrane-cloaked nanoparticles on nano-bio interaction is rarely studied. In the present study, keeping the other parameters constant, erythrocyte membrane (EM)-cloaked nanoparticles (nanoEMs) with different Young's moduli are fabricated by altering different kinds of nano-core (i.e., aqueous phase core, gelatin nanoparticles, and platinum nanoparticles). The designed nanoEMs are used to investigate the effect of nanoparticle elasticity on nano-bio interaction including cellular internalization, tumor penetration, biodistribution, blood circulation, and so on. The results demonstrate that the nanoEMs with intermediate elasticity (≈95 MPa) have a relatively higher increase in cellular internalization and inhibition of tumor cells migration than the soft (≈11 MPa) and stiff (≈173 MPa) ones. Furthermore, in vivo studies show that nanoEMs with intermediate elasticity preferentially accumulate and penetrate into tumor sites than the soft and stiff ones, while in circulation, softer nanoEMs show a longer blood circulation time. This work provides an insight for optimizing the design of biomimetic carriers and may further contribute to the selection of nanomaterials on biomedical application.


Assuntos
Nanopartículas Metálicas , Distribuição Tecidual , Platina , Elasticidade , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo
13.
Blood Adv ; 7(9): 1739-1753, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36649586

RESUMO

Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied. Both K3-deficient strains and K3KI mice showed anemia at baseline, reduced response to erythropoietin stimulation, and compromised recovery after phenylhydrazine (PHZ)-induced hemolytic anemia as compared with K3WT. Erythroid K3KO and K3 (Q597W598 to AA) showed arrested erythroid differentiation at proerythroblast stage, whereas macrophage K3KO showed decreased erythroblast numbers at all developmental stages of terminal erythroid differentiation because of reduced erythroblastic island (EBI) formation attributable to decreased expression and activation of erythroblast integrin α4ß1 and macrophage αVß3. Peripheral blood smears of K3KO∖EpoR-cre mice, but not of the other mouse strains, showed numerous aberrant tear drop-shaped erythrocytes. K3 deficiency in these erythrocytes led to disorganized actin cytoskeleton, reduced deformability, and increased osmotic fragility. Mechanistically, K3 directly interacted with F-actin through an actin-binding site K3-LK48. Taken together, these findings document that erythroid and macrophage K3 are critical contributors to erythropoiesis in an integrin-dependent manner, whereas F-actin binding to K3 maintains the membrane cytoskeletal integrity and erythrocyte biconcave shape. The dual function of K3 in erythrocytes and in EBIs establish an important functional role for K3 in normal erythroid function.


Assuntos
Proteínas do Citoesqueleto , Eritropoese , Animais , Humanos , Camundongos , Actinas/metabolismo , Anemia Hemolítica , Proteínas do Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Integrinas/metabolismo
14.
PLoS One ; 17(12): e0272675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36542609

RESUMO

Functional effectiveness of erythrocytes depends on their high deformability that allows them to pass through narrow tissue capillaries. The erythrocytes can deform easily due to discoid shape provided by the stabilization of an optimal cell volume at a given cell surface area. We used mathematical simulation to study the role of transport Na/K-ATPase and transmembrane Na+ and K+ gradients in human erythrocyte volume stabilization at non-selective increase in cell membrane permeability to cations. The model included Na/K-ATPase activated by intracellular Na+, Na+ and K+ transmembrane gradients, and took into account contribution of glycolytic metabolites and adenine nucleotides to cytoplasm osmotic pressure. We found that this model provides the best stabilization of the erythrocyte volume at non-selective increase in the permeability of the cell membrane, which can be caused by an oxidation of the membrane components or mechanical stress during circulation. The volume of the erythrocyte deviates from the optimal value by no more than 10% with a change in the non-selective permeability of the cell membrane to cations from 50 to 200% of the normal value. If only one transmembrane ion gradient is present (Na+), the cell loses the ability to stabilize volume and even small changes in membrane permeability cause dramatic changes in the cell volume. Our results reveal that the presence of two oppositely directed transmembrane ion gradients is fundamentally important for robust stabilization of cellular volume in human erythrocytes.


Assuntos
Membrana Eritrocítica , Volume de Eritrócitos , Humanos , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Cátions/metabolismo , Potássio/metabolismo
15.
Can J Physiol Pharmacol ; 100(10): 968-982, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148907

RESUMO

Apart from demonstrating the interaction behavior of malondialdehyde (MDA) with Na+/K+-ATPase using in silico, the current study aims to investigate the effect of rheumatoid arthritis-related oxidative stress on Na+/K+-ATPase activity that is present in the erythrocyte cell membrane, which is rich in proteins vulnerable to damage from MDA and other free radicals. The target population of this study consists of 28 rheumatoid arthritis patients and 20 healthy volunteers whose MDA levels and Na+/K+-ATPase activity were determined. It was shown that MDA levels of rheumatoid arthritis patients increased (p < 0.001) and their Na+/K+-ATPase activity noticeably decreased when compared to those of healthy individuals. Also, according to this in silico modeling, MDA decreased Na+/K+-ATPase activity in line with the correlation analyses. Consequently, while elevated levels of MDA in the rheumatoid arthritis group were suggestive of oxidative stress, a decreased Na+/K+-ATPase-activity led us to speculate that the cellular membrane had sustained injury. Therefore, our results could be useful in explaining how MDA affects Na+/K+-ATPase activity in the interior of a specific molecular pathway.


Assuntos
Artrite Reumatoide , Membrana Eritrocítica , Artrite Reumatoide/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Malondialdeído/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Expert Opin Drug Deliv ; 19(8): 965-984, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917435

RESUMO

INTRODUCTION: Red blood cell (or erythrocyte) membrane-camouflaged nanoparticles (RBC-NPs) not only have a superior circulation life and do not induce accelerated blood clearance but also possess special functions, which offers great potential in cancer therapy. AREAS COVERED: This review focuses on the recent advances of RBC-NPs for delivering various agents to treat cancers in light of their vital role in improving drug delivery. Meanwhile, the construction and in vivo behavior of RBC-NPs are discussed to provide an in-depth understanding of the basis of RBC-NPs for improved cancer drug delivery. EXPERT OPINION: Although RBC-NPs are quite prospective in delivering anti-cancer therapeutics, they are still in their infancy stage and many challenges need to be overcome for successful translation into the clinic. The preparation and modification of RBC membranes, the optimization of coating methods, the scale-up production and the quality control of RBC-NPs, and the drug loading and release should be carefully considered in the clinical translation of RBC-NPs for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Membrana Eritrocítica/metabolismo , Humanos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Fototerapia , Estudos Prospectivos
17.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743319

RESUMO

Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.


Assuntos
Ausência de Peso , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo
18.
Adv Sci (Weinh) ; 9(20): e2201481, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508805

RESUMO

Red blood cells (RBCs) are cleared from the circulation when they become damaged or display aging signals targeted by macrophages. This process occurs mainly in the spleen, where blood flows through submicrometric constrictions called inter-endothelial slits (IES), subjecting RBCs to large-amplitude deformations. In this work, RBCs are circulated through microfluidic devices containing microchannels that replicate the IES. The cyclic mechanical stresses experienced by the cells affect their biophysical properties and molecular composition, accelerating cell aging. Specifically, RBCs quickly transition to a more spherical, less deformable phenotype that hinders microchannel passage, causing hemolysis. This transition is associated with the release of membrane vesicles, which self-extinguishes as the spacing between membrane-cytoskeleton linkers becomes tighter. Proteomics analysis of the mechanically aged RBCs reveals significant losses of essential proteins involved in antioxidant protection, gas transport, and cell metabolism. Finally, it is shown that these changes make mechanically aged RBCs more susceptible to macrophage phagocytosis. These results provide a comprehensive model explaining how physical stress induces RBC clearance in the spleen. The data also suggest new biomarkers of early "hemodamage" and inflammation preceding hemolysis in RBCs subjected to mechanical stress.


Assuntos
Membrana Eritrocítica , Hemólise , Membrana Eritrocítica/metabolismo , Humanos , Macrófagos , Fagocitose , Estresse Mecânico
19.
Rejuvenation Res ; 25(3): 122-128, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35373604

RESUMO

3-Bromopyruvate (3-BP) is a glycolytic inhibitor and a potential calorie restriction mimic that shows a variety of beneficial effects in several aging model systems. A chronic low dose of 3-BP was given to male Wistar rats for 4 weeks. The effect of 3-BP on age-dependent alteration on the activities of various transporters/exchangers and redox biomarkers (protein carbonyl [PC], sialic acid [SA], sulfhydryl group [-SH], intracellular calcium ion [Ca2+]i, and osmotic fragility) was studied. In aged rats, 3-BP treatment increases the membrane-bound activities of Na+/K+-ATPase (NKA) and Ca2+-ATPase (PMCA), along with levels of -SH and SA. It also exerts a concomitant decrease in Na+/H+ exchanger (NHE) activity and the levels of [Ca2+]i, PC, and osmotic fragility in aged groups. 3-BP can be considered as a potential antiaging agent that induces a hormetic effect leading to amelioration of age-dependent impairment of membrane-bound ATPases and alterations in the redox biomarker level.


Assuntos
Membrana Eritrocítica , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Animais , Biomarcadores/metabolismo , Membrana Eritrocítica/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Ácido N-Acetilneuramínico , Oxirredução , Estresse Oxidativo , Piruvatos , Ratos , Ratos Wistar
20.
Artigo em Russo | MEDLINE | ID: mdl-35485655

RESUMO

The high prevalence of the combination of arterial hypertension (AH) with coronary heart disease (CHD) suggests the improvement of their treatment methods. In this regard, it is of interest to assess the dynamics of the clinical picture of patients against the background of pathogenetically determined subcellular and systemic changes under the influence of laser therapy (LT). OBJECTIVE: To evaluate the clinical effect of LT in patients with hypertension in combination with coronary artery disease and trace its relationship with the dynamics of the structure of the lipid bilayer of the erythrocyte membrane and changes in the microvascular bed. MATERIAL AND METHODS: We examined 65 male patients (mean age 50.9±6.3 years) with II-III degree AH in combination with coronary artery disease with angina pectoris. Among them, 40 patients received a 10-day course of LT, and 25 patients underwent simulated laser irradiation. At the initial stage and after 1 month, all patients underwent a bicycle exercise test, a study of the lipid composition of the erythrocyte membrane, including the main fractions of phospholipids and free cholesterol, as well as the level of intracellular Ca2+ and lipid peroxidation products - malondialdehyde and diene conjugates. Microcirculation was assessed using the method of conjunctival biomicroscopy. RESULTS: One month after the course of LT, patients showed a significant increase in exercise tolerance by 37.8%, a decrease in systolic blood pressure with a standard load by 9.9%. The improvement of the clinical picture occurred against the background of a decrease in the activity of lipid peroxidation and structural changes in the cell membrane: an increase in polyunsaturated fractions of phospholipids and a decrease in the cholesterol content, as well as a decrease in the Ca2+ level in the cell from 0.23 [0.19; 0.32] to 0.20 [0.16; 0.26] mmol/l. The results of the analysis of conjunctival biomicroscopy demonstrated a statistically significant decrease in the ratio of arteriolovenular calibers, a limitation of the severity of sludge syndrome by 59%, and an almost twofold (from 3.9±0.52 to 7.2±1.23 cap/mm2) increase in capillary density. CONCLUSION: The data obtained showed that in patients with hypertension in combination with coronary artery disease, LT causes positive changes in the lipid structure of the cell membrane and microcirculation parameters, which is accompanied by a hypotensive effect and an improvement in the clinical and functional state of patients.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Terapia a Laser , Adulto , Colesterol/análise , Colesterol/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/efeitos da radiação , Feminino , Humanos , Hipertensão/complicações , Hipertensão/radioterapia , Masculino , Microcirculação , Pessoa de Meia-Idade , Fosfolipídeos/análise , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA