Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 860
Filtrar
1.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
2.
Cell Rep ; 37(10): 110077, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879280

RESUMO

Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.


Assuntos
Citosol/virologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vírus 40 dos Símios/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Masculino , Proteínas de Membrana/genética , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/ultraestrutura
3.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686867

RESUMO

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Ativação de Macrófagos , Melanoma/metabolismo , Lipídeos de Membrana/metabolismo , Neoplasias Cutâneas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Retículo Endoplasmático/ultraestrutura , Glucosilceramidase/metabolismo , Membranas Intracelulares/ultraestrutura , Melanoma/genética , Melanoma/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/ultraestrutura , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor/ultraestrutura , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
Viruses ; 13(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578379

RESUMO

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Assuntos
Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , SARS-CoV-2/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Proteínas M de Coronavírus/fisiologia , Proteínas M de Coronavírus/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Microscopia Eletrônica , SARS-CoV-2/ultraestrutura , Células Vero , Proteínas Estruturais Virais/fisiologia , Proteínas Estruturais Virais/ultraestrutura
5.
Methods Mol Biol ; 2277: 449-461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34080168

RESUMO

Conventional transmission electron microscopy is an essential tool to understand the structure-function relationships and play a vital role in biological research. Mitochondria-associated membranes are linked with cancer processes in a fundamental manner. A conventional transmission electron microscopy method for preparing specimens in clinical and research settings for the study-analysis of the mitochondria-associated membranes in human tumors is presented. The sample processing includes chemical fixation by immersion, dehydration, embedding, polymerization, sectioning, and staining.


Assuntos
Membranas Intracelulares/ultraestrutura , Mitocôndrias/ultraestrutura , Neoplasias/patologia , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão/métodos , Membranas Mitocondriais/ultraestrutura , Neoplasias/ultraestrutura , Inclusão do Tecido/métodos
6.
Science ; 372(6545): 935-941, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33927055

RESUMO

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas de Bactérias/química , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Retroalimentação Fisiológica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/ultraestrutura , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Mutação , Fosfatidilinositol 3-Quinase/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Células RAW 264.7
7.
Commun Biol ; 4(1): 137, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514845

RESUMO

Lamellar bodies (LBs) are surfactant-rich organelles in alveolar cells. LBs disassemble into a lipid-protein network that reduces surface tension and facilitates gas exchange in the alveolar cavity. Current knowledge of LB architecture is predominantly based on electron microscopy studies using disruptive sample preparation methods. We established and validated a post-correlation on-lamella cryo-correlative light and electron microscopy approach for cryo-FIB milled cells to structurally characterize and validate the identity of LBs in their unperturbed state. Using deconvolution and 3D image registration, we were able to identify fluorescently labeled membrane structures analyzed by cryo-electron tomography. In situ cryo-electron tomography of A549 cells as well as primary Human Small Airway Epithelial Cells revealed that LBs are composed of membrane sheets frequently attached to the limiting membrane through "T"-junctions. We report a so far undescribed outer membrane dome protein complex (OMDP) on the limiting membrane of LBs. Our data suggest that LB biogenesis is driven by parallel membrane sheet import and by the curvature of the limiting membrane to maximize lipid storage capacity.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Membranas Intracelulares/ultraestrutura , Neoplasias Pulmonares/ultraestrutura , Organelas/ultraestrutura , Alvéolos Pulmonares/ultraestrutura , Células A549 , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Organelas/metabolismo , Alvéolos Pulmonares/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
8.
J Integr Plant Biol ; 63(2): 353-364, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33085164

RESUMO

The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three-dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV-AC ), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck-like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV-AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.


Assuntos
Imageamento Tridimensional , Membranas Intracelulares/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vacúolos/metabolismo , Cucumovirus/fisiologia , Cucumovirus/ultraestrutura , Tomografia com Microscopia Eletrônica , Membranas Intracelulares/ultraestrutura , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/virologia , Vírus de Plantas/ultraestrutura , Frações Subcelulares/metabolismo , Nicotiana/citologia , Tombusviridae/fisiologia , Tombusviridae/ultraestrutura , Vacúolos/ultraestrutura , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
9.
Nat Commun ; 11(1): 6173, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268771

RESUMO

Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4× to 10× expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20 nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 ± 7.7 nm.


Assuntos
Ceramidas/química , Chlamydia trachomatis/ultraestrutura , Chlamydiales/ultraestrutura , Células Epiteliais/ultraestrutura , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neisseria gonorrhoeae/ultraestrutura , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ceramidas/metabolismo , Chlamydia trachomatis/metabolismo , Chlamydiales/metabolismo , Química Click/métodos , Túnica Conjuntiva/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Hidrogéis/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Neisseria gonorrhoeae/metabolismo , Coloração e Rotulagem/métodos
10.
Int J Oncol ; 57(6): 1280-1292, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33173988

RESUMO

The proton pump inhibitor lansoprazole (LPZ) inhibits the growth of several cancer cell lines, including A549 and CAL 27. We previously reported that macrolide antibiotics such as azithromycin (AZM) and clarithromycin (CAM) potently inhibit autophagic flux and that combining AZM or CAM with the epidermal growth factor receptor inhibitors enhanced their antitumor effect against various cancer cells. In the present study, we conducted the combination treatment with LPZ and macrolide antibiotics against A549 and CAL 27 cells and evaluated cytotoxicity and morphological changes using cell proliferation and viability assays, flow cytometric analysis, immunoblotting, and morphological assessment. Combination therapy with LPZ and AZM greatly enhanced LPZ­induced cell death, whereas treatment with AZM alone exhibited negligible cytotoxicity. The observed cytotoxic effect was not mediated through apoptosis or necroptosis. Transmission electron microscopy of A549 cells treated with the LPZ + AZM combination revealed morphological changes associated with necrosis and accumulated autolysosomes with undigested contents. Furthermore, the A549 cell line with ATG5 knockout exhibited complete inhibition of autophagosome formation, which did not affect LPZ + AZM treatment­induced cytotoxicity, thus excluding the involvement of autophagy­dependent cell death in LPZ + AZM treatment­induced cell death. A549 cells treated with LPZ + AZM combination therapy retained the endosomal Alexa­dextran for extended duration as compared to untreated control cells, thus indicating impairment of lysosomal digestion. Notably, lysosomal galectin­3 puncta expression induced due to lysosomal membrane permeabilization was increased in cells treated with LPZ + AZM combination as compared to the treatment by either agent alone. Collectively, the present results revealed AZM­induced autolysosome accumulation, potentiated LPZ­mediated necrosis, and lysosomal membrane permeabilization, thus suggesting the potential clinical application of LPZ + AZM combination therapy for cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azitromicina/farmacologia , Lansoprazol/farmacologia , Lisossomos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Azitromicina/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Técnicas de Inativação de Genes , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Lansoprazol/uso terapêutico , Lisossomos/patologia , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Neoplasias/patologia , Permeabilidade/efeitos dos fármacos
11.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597778

RESUMO

Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/virologia , Células Epiteliais/virologia , Proteínas Associadas aos Microtúbulos/genética , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Vírion/genética , Animais , Autofagia/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Calnexina/genética , Calnexina/metabolismo , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Rotavirus/crescimento & desenvolvimento , Rotavirus/metabolismo , Rotavirus/ultraestrutura , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/genética , Replicação Viral/genética
12.
Traffic ; 20(1): 82-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30426618

RESUMO

Phosphatidylinositol 4-phophate (PtdIns(4)P) is an essential signaling molecule in the Golgi body, endosomal system, and plasma membrane and functions in the regulation of membrane trafficking, cytoskeletal organization, lipid metabolism and signal transduction pathways, all mediated by direct interaction with PtdIns(4)P-binding proteins. PtdIns(4)P was recently reported to have functional roles in autophagosome biogenesis. LC3 and GABARAP subfamilies and a small GTP-binding protein, Rab7, are localized on autophagosomal membranes and participate at each stage of autophagosome formation and maturation. To better understand autophagosome biogenesis, it is essential to determine the localization of PtdIns(4)P and to examine its relationship with LC3 and GABARAP subfamilies and Rab7. To analyze PtdIns(4)P distribution, we used an electron microscopy technique that labels PtdIns(4)P on the freeze-fracture replica of intracellular biological membranes, which minimizes the possibility of artificial perturbation because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P is localized on the cytoplasmic, but not the luminal (exoplasmic), leaflet of the inner and outer membranes of autophagosomes. Double labeling revealed that PtdIns(4)P mostly colocalizes with Rab7, but not with LC3B, GABARAP, GABARAPL1 and GABARAPL2. Rab7 plays essential roles in autophagosome maturation and in autophagosome-lysosome fusion events. We suggest that PtdIns(4)P is localized to the cytoplasmic leaflet of the autophagosome at later stages, which may illuminate the importance of PtdIns(4)P at the later stages of autophagosome formation.


Assuntos
Autofagossomos/ultraestrutura , Técnica de Fratura por Congelamento/métodos , Fosfatidilinositóis/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , proteínas de unión al GTP Rab7
13.
ACS Nano ; 13(1): 187-202, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30566836

RESUMO

The intracellular delivery of nucleic acids and proteins remains a key challenge in the development of biological therapeutics. In gene therapy, the inefficient delivery of small interfering RNA (siRNA) to the cytosol by lipoplexes or polyplexes is often ascribed to the entrapment and degradation of siRNA payload in the endosomal compartments. A possible mechanism by which polyplexes rupture the endosomal membrane and release their nucleic acid cargo is commonly defined as the "proton sponge effect". This is an osmosis-driven process triggered by the proton buffering capacity of polyplexes. Herein, we investigate the molecular basis of the "proton sponge effect" through direct visualization of the siRNA trafficking process, including analysis of individual polyplexes and endosomes, using stochastic optical reconstruction microscopy. We probe the sequential siRNA trafficking steps through single molecule super-resolution analysis of subcellular structures, polyplexes, and silencing RNA molecules. Specifically, individual intact polyplexes released in the cytosol upon rupture of the endosomes, the damaged endosomal vesicles, and the disassembly of the polyplexes in the cytosol are examined. We find that the architecture of the polyplex and the rigidity of the cationic polymer chains are crucial parameters that control the mechanism of endosomal escape driven by the proton sponge effect. We provide evidence that in highly branched and rigid cationic polymers, such as glycogen or polyethylenimine, immobilized on silica nanoparticles, the proton sponge effect is effective in inducing osmotic swelling and rupture of endosomes.


Assuntos
Citoplasma/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Prótons , RNA Interferente Pequeno/metabolismo , Transporte Biológico , Citoplasma/ultraestrutura , Endossomos/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Nanopartículas/química , Células PC-3 , RNA Interferente Pequeno/ultraestrutura , Imagem Individual de Molécula/métodos
14.
Exp Cell Res ; 371(1): 139-150, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098331

RESUMO

Overexpression of ErbB2 is frequent in cancer and understanding the mechanisms which regulate its expression is important. ErbB2 is considered endocytosis resistant. It has no identified ligand, but upon heterodimerization it is a potent mediator of proliferative signaling. A recent study established a role for protein kinase C (PKC) in internalization and recycling of ErbB2. We have now further investigated the molecular mechanisms involved in PKC-mediated downregulation of ErbB2. We confirm that PMA-induced PKC activation causes ErbB2 internalization, but while the Hsp90 inhibitor 17-AAG induced ErbB2 degradation, PMA had no such effect. When combined with 17-AAG, PMA had additive effect on ErbB2 internalization indicating that Hsp90 inhibition and PKC activation induce internalization by alternative mechanisms. We confirm that while 17-AAG-induced internalization was clathrin-mediated, PMA-induced internalization was clathrin independent. This difference may be explained by while both 17-AAG and PMA reduced the constitutive tyrosine phosphorylation of ErbB2, only 17-AAG induced Hsp90 dissociation, Hsp70 recruitment and ubiquitination of ErbB2. Importantly, since PMA induced internalization of ErbB2, but not dissociation of Hsp90, Hsp90 does not per se retain ErbB2 at the plasma membrane. The morphology of the compartment into which receptors are sorted upon PKC activation has not previously been identified. By immuno-electron microscopy, we show that PMA sorts ErbB2 into a complex tubulovesicular or cisternal organelle resembling a previously described endocytic recycling compartment.


Assuntos
Benzoquinonas/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/farmacologia , Proteína Quinase C/genética , Receptor ErbB-2/genética , Acetato de Tetradecanoilforbol/farmacologia , Linhagem Celular Tumoral , Clatrina/genética , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Microscopia Imunoeletrônica , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Transdução de Sinais , Ubiquitinação/efeitos dos fármacos
15.
Plant Physiol ; 176(1): 282-294, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821590

RESUMO

Chloroplasts are multifunctional organelles whose morphology is affected by environmental stresses. Although the three-dimensional (3D) architecture of thylakoid membranes has been reported previously, a 3D visualization of chloroplast under stress has not been explored. In this work, we used a positive-strand RNA ((+)RNA) virus, barley stripe mosaic virus (BSMV) to observe chloroplast structural changes during infection by electron tomography. The analyses revealed remodeling of the chloroplast membranes, characterized by the clustering of outer membrane-invaginated spherules in inner membrane-derived packets. Diverse morphologies of cytoplasmic invaginations (CIs) were evident with spherules at the periphery and different sized openings connecting the CIs to the cytoplasm. Immunoelectron microscopy of these viral components verified that the aberrant membrane structures were sites for BSMV replication. The BSMV αa replication protein localized at the surface of the chloroplasts and played a prominent role in eliciting chloroplast membrane rearrangements. In sum, our results have revealed the 3D structure of the chloroplasts induced by BSMV infection. These findings contribute to our understanding of chloroplast morphological changes under stress conditions and during assembly of plant (+)RNA virus replication complexes.


Assuntos
Cloroplastos/ultraestrutura , Cloroplastos/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Imageamento Tridimensional , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , RNA Viral/metabolismo , Nicotiana/virologia , Proteínas Virais/metabolismo
16.
EMBO Rep ; 18(11): 1893-1904, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29030479

RESUMO

Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.


Assuntos
Retículo Endoplasmático/metabolismo , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Sistemas do Segundo Mensageiro , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplasmático/ultraestrutura , Células Eucarióticas/ultraestrutura , Expressão Gênica , Humanos , Membranas Intracelulares/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte de Íons , Metabolismo dos Lipídeos , Mitocôndrias/ultraestrutura
17.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1687-1695, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28844737

RESUMO

Identifying the key structural and dynamical determinants that drive the association of biomolecules, whether in solution, or perhaps more importantly in a membrane environment, has critical implications for our understanding of cellular dynamics, processes, and signaling. With recent advances in high-resolution imaging techniques, from the development of new molecular labels to technical advances in imaging methodologies and platforms, researchers are now reaping the benefits of being able to directly characterize and quantify local dynamics, structures, and conformations in live cells and tissues. These capabilities are providing unique insights into association stoichiometries, interactions, and structures on sub-micron length scales. We previously examined the role of lipid headgroup chemistry and phase state in guiding the formation of pseudoisocyanine (PIC) dye J-aggregates on supported planar bilayers [Langmuir, 25, 10719]. We describe here how these same J-aggregates can report on the in situ formation of organellar membrane domains in live cells. Live cell hyperspectral confocal microscopy using GFP-conjugated GTPase markers of early (Rab5) and late (Rab7) endosomes revealed that the PIC J-aggregates were confined to domains on either the limiting membrane or intralumenal vesicles (ILV) of late endosomes, known to be enriched in the anionic lipid bis(monoacylglycero)phosphate (BMP). Correlated confocal fluorescence - atomic force microscopy performed on endosomal membrane-mimetic supported planar lipid bilayers confirmed BMP-specific templating of the PIC J-aggregates. These data provide strong evidence for the formation of BMP-rich lipid domains during multivesicular body formation and portend the application of structured dye aggregates as markers of cellular membrane domain structure, size, and formation.


Assuntos
Endossomos/metabolismo , Glicerofosfatos/metabolismo , Membranas Intracelulares/metabolismo , Microdomínios da Membrana/metabolismo , Monoglicerídeos/metabolismo , Animais , Células CHO , Cricetulus , Endossomos/ultraestrutura , Células Hep G2 , Humanos , Membranas Intracelulares/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Células NIH 3T3 , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
18.
J Cell Sci ; 130(18): 3124-3140, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754686

RESUMO

L-leucyl-L-leucine methyl ester (LLOMe) induces apoptosis, which is thought to be mediated by release of lysosomal cysteine cathepsins from permeabilized lysosomes into the cytosol. Here, we demonstrated in HeLa cells that apoptotic as well as sub-apoptotic concentrations of LLOMe caused rapid and complete lysosomal membrane permeabilization (LMP), as evidenced by loss of the proton gradient and release into the cytosol of internalized lysosomal markers below a relative molecular mass of 10,000. However, there was no evidence for the release of cysteine cathepsins B and L into the cytosol; rather they remained within lysosomes, where they were rapidly inactivated and degraded. LLOMe-induced adverse effects, including LMP, loss of cysteine cathepsin activity, caspase activation and cell death could be reduced by inhibition of cathepsin C, but not by inhibiting cathepsins B and L. When incubated with sub-apoptotic LLOMe concentrations, lysosomes transiently lost protons but annealed and re-acidified within hours. Full lysosomal function required new protein synthesis of cysteine cathepsins and other hydrolyses. Our data argue against the release of lysosomal enzymes into the cytosol and their proposed proteolytic signaling during LLOMe-induced apoptosis.


Assuntos
Catepsinas/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Dipeptídeos/farmacologia , Lisossomos/metabolismo , Apoptose/efeitos dos fármacos , Citosol/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Lisossomos/ultraestrutura , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Prótons
19.
Proc Natl Acad Sci U S A ; 114(10): E2036-E2045, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202726

RESUMO

The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canais de Cloreto/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Membranas Intracelulares/ultraestrutura , Potenciais da Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Pressão Osmótica , Técnicas de Patch-Clamp , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
20.
J Cell Biol ; 216(2): 331-342, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28108524

RESUMO

Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO-ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A-binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5-VAPB interaction regulates PO-ER associations. Moreover, we demonstrate that loss of PO-ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO-ER associations in mammalian cells and report a new function for ACBD5 in PO-ER tethering.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Movimento , Peroxissomos/metabolismo , Junções Íntimas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células Hep G2 , Humanos , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Microscopia de Fluorescência , Peroxissomos/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA