Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Med Oncol ; 40(8): 244, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453954

RESUMO

Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.


Assuntos
Neoplasias da Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacologia , Metaloproteinase 9 da Matriz/genética , Células PC-3 , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Linhagem Celular Tumoral , Apoptose , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Metaloproteinases da Matriz , RNA Mensageiro/genética
2.
Nat Commun ; 14(1): 4557, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507371

RESUMO

Glioblastoma (GBM) remains the most lethal malignant tumours. Gboxin, an oxidative phosphorylation inhibitor, specifically restrains GBM growth by inhibiting the activity of F0F1 ATPase complex V. However, its anti-GBM effect is seriously limited by poor blood circulation, the blood brain barrier (BBB) and non-specific GBM tissue/cell uptake, leading to insufficient Gboxin accumulation at GBM sites, which limits its further clinical application. Here we present a biomimetic nanomedicine (HM-NPs@G) by coating cancer cell-mitochondria hybrid membrane (HM) on the surface of Gboxin-loaded nanoparticles. An additional design element uses a reactive oxygen species responsive polymer to facilitate at-site Gboxin release. The HM camouflaging endows HM-NPs@G with unique features including good biocompatibility, improved pharmacokinetic profile, efficient BBB permeability and homotypic dual tumour cell and mitochondria targeting. The results suggest that HM-NPs@G achieve improved blood circulation (4.90 h versus 0.47 h of free Gboxin) and tumour accumulation (7.73% ID/g versus 1.06% ID/g shown by free Gboxin). Effective tumour inhibition in orthotopic U87MG GBM and patient derived X01 GBM stem cell xenografts in female mice with extended survival time and negligible side effects are also noted. We believe that the biomimetic Gboxin nanomedicine represents a promising treatment for brain tumours with clinical potential.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Feminino , Animais , Camundongos , Glioblastoma/patologia , Nanomedicina , Linhagem Celular Tumoral , Membranas Mitocondriais/patologia , Barreira Hematoencefálica/metabolismo , Mitocôndrias , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
3.
Anticancer Res ; 43(6): 2455-2465, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247906

RESUMO

BACKGROUND/AIM: Primary effusion lymphoma (PEL) is classified as a rare non-Hodgkin's B-cell lymphoma that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV); PEL cells are latently infected with KSHV. PEL is frequently resistant to conventional chemotherapies. Therefore, the development of novel therapeutic agents is urgently required. Nigericin, a H+ and K+ ionophore, possesses unique pharmacological effects. However, the effects of nigericin on PEL cells remain unknown. MATERIALS AND METHODS: We examined the cytotoxic effects of the K+ ionophores, nigericin, nonactin, and valinomycin, on various B-lymphoma cells including PEL. We also evaluated ionophore-induced changes in signaling pathways involved in KSHV-induced oncogenesis. Moreover, the effects of nigericin on mitochondrial membrane potential and viral reactivation in PEL were analyzed. RESULTS: Although the three tested ionophores inhibited the proliferation of several B-lymphoma cell lines, nigericin inhibited the proliferation of PEL cells compared to KSHV-negative cells. In PEL cells, nigericin disrupted the mitochondrial membrane potential and caused the release of cytochrome c, which triggered caspase-9-mediated apoptosis. Nigericin also induced both an increase in phosphorylated p38 MAPK and proteasomal degradation of ß-catenin. Combination treatment of nigericin with the p38 MAPK inhibitor SB203580 potentiated the cytotoxic effects towards PEL cells, compared to either compound alone. Meanwhile, nigericin did not influence viral replication in PEL cells. CONCLUSION: Nigericin induces apoptosis in PEL cells by mitochondrial dysfunction and down-regulation of Wnt/ß-catenin signaling. Thus, nigericin is a novel drug candidate for treating PEL without the risk of de novo KSHV infection.


Assuntos
Antineoplásicos , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Humanos , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/patologia , Nigericina/metabolismo , Nigericina/farmacologia , Nigericina/uso terapêutico , beta Catenina/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Herpesvirus Humano 8/fisiologia , Mitocôndrias , Ionóforos/metabolismo , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32789789

RESUMO

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Neoplasias , Humanos , Sinalização do Cálcio/fisiologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Morte Celular , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias/metabolismo
5.
FASEB J ; 35(7): e21688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143516

RESUMO

The mitochondria-associated membrane (MAM) is a functional subdomain of the endoplasmic reticulum membrane that tethers to the mitochondrial outer membrane and is essential for cellular homeostasis. A defect in MAM is involved in various neurological diseases, including amyotrophic lateral sclerosis (ALS). Recently, we and others reported that MAM was disrupted in the models expressing several ALS-linked genes, including SOD1, SIGMAR1, VAPB, TARDBP, and FUS, suggesting that MAM disruption is deeply involved in the pathomechanism of ALS. However, it is still uncertain whether MAM disruption is a common pathology in ALS, mainly due to the absence of a simple, quantitative tool for monitoring the status of MAM. In this study, to examine the effects of various ALS-causative genes on MAM, we created the following two novel MAM reporters: MAMtracker-Luc and MAMtracker-Green. The MAMtrackers could detect MAM disruption caused by suppression of SIGMAR1 or the overexpression of ALS-linked mutant SOD1 in living cells. Moreover, the MAMtrackers have an advantage in their ability to monitor reversible changes in the MAM status induced by nutritional conditions. We used the MAMtrackers with an expression plasmid library of ALS-causative genes and noted that 76% (16/21) of the genes altered MAM integrity. Our results suggest that MAM disruption is a common pathological feature in ALS. Furthermore, we anticipate our MAMtrackers, which are suitable for high-throughput assays, to be valuable tools to understand MAM dynamics.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Neuroblastoma/patologia , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo
6.
Cells ; 10(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809551

RESUMO

The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Sinalização do Cálcio , Retículo Endoplasmático/patologia , Metabolismo Energético , Humanos , Lipogênese , Mitocôndrias/patologia , Membranas Mitocondriais/patologia
7.
FEBS Lett ; 595(8): 1159-1183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837538

RESUMO

Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Membranas Mitocondriais , Proteínas Mitocondriais , Apoptose/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
8.
Cell Death Dis ; 12(3): 271, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723235

RESUMO

Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and ß (IKKα/ß) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas/enzimologia , Metabolismo Energético , Glioblastoma/enzimologia , Mitocôndrias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral , Quinase Induzida por NF-kappaB
9.
Biochim Biophys Acta Biomembr ; 1863(1): 183471, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931774

RESUMO

Mitochondria have emerged as important determinants in cancer progression and malignancy. However, the role of mitochondrial membranes in cancer onset and progression has not been thoroughly investigated. This study compares the structural and functional properties of mitochondrial membranes in prostate and colon cancer cells in comparison to normal mitochondria, and possible therapeutic implications of these membrane changes. Specifically, isolation of cell mitochondria and preparation of inverted sub-mitochondrial particles (SMPs) illuminated significant cancer-induced modulations of membrane lipid compositions, fluidity, and activity of cytochrome c oxidase, one of the key mitochondrial enzymes. The experimental data further show that cancer-associated membrane transformations may account for mitochondria targeting by betulinic acid and resveratrol, known anti-cancer molecules. Overall, this study probes the relationship between cancer and mitochondrial membrane transformations, underlying a potential therapeutic significance for mitochondrial membrane targeting in cancer.


Assuntos
Neoplasias do Colo , Lipídeos de Membrana/metabolismo , Mitocôndrias , Membranas Mitocondriais , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
10.
Transl Res ; 229: 38-52, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32861831

RESUMO

Coronary artery bypass grafting (CABG) is the standard treatment modality in revascularization of the myocardium. However, the graft failure remains the major complication following CABG procedure. Involvement of mitochondrial damage-associated molecular patterns (mt-DAMPs) in the pathogenesis of vein-graft failure is largely unknown. Here, we investigated the expression of major protein-mt-DAMPs, cytochrome-C (Cyt-C), heat shock protein-60 (Hsp-60), mitochondrial transcription factor A (mtTFA), in the occluded graft and associated tissues, including distal left anterior descending (LAD), LAD adjacent to anastomosis, and left internal mammary artery (LIMA) in the microswine CABG model. The protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was significantly decreased in the graft and LIMA, whereas the protein expression of hypoxia inducible factor-1 alpha (HIF-1α) and Cyt-C was decreased and that of mtTFA and Hsp60 was increased in all tissues compared to controls. There was no significant difference in the protein expression of citrate synthase, complex-1, and mitochondrial pyruvate dehydrogenase in the graft and associated tissues compared to control. Hypoxia in cultured smooth muscle cells (SMCs) significantly upregulated all mitochondrial biomarkers and mt-DAMPs compared to normoxia. The increased reactive oxygen species (ROS) content and compromised membrane integrity in the hypoxic SMCs correlated well with increased mt-DAMPs in the graft and associated tissues, suggesting a possible role of mt-DAMPs in the pathogenesis of graft failure. These findings suggest that the pathological signals elicited by mt-DAMPs could reveal targets for better therapeutic approaches and diagnostic strategies in the management of CABG graft failure.


Assuntos
Ponte de Artéria Coronária/efeitos adversos , Hipóxia/fisiopatologia , Mitocôndrias/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas/metabolismo , Animais , Hipóxia Celular , Ponte de Artéria Coronária/métodos , Modelos Animais de Doenças , Feminino , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Miócitos de Músculo Liso/patologia , Projetos Piloto , Suínos , Porco Miniatura , Falha de Tratamento , Veias/patologia , Veias/cirurgia , Veias/transplante , Trombose Venosa
11.
Chem Biol Interact ; 333: 109334, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245930

RESUMO

The cytotoxic potential of a naturally occurring indoloquinazoline alkaloid, soyauxinium chloride (SCHL), was determined on a broad panel of animal and human cancer cell lines, including various sensitive and drug-resistant phenotypes. The cytotoxicity, SCHL-induced autophagic, ferroptotic, and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). Caspase-Glo assay was used to detect the activity of caspases using spectrophotometric analysis. Flow cytometry was applied for cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA). SCHL and doxorubicin (reference molecule) exhibited cytotoxic effects towards the 18 cancer cell lines tested. The IC50 values obtained ranged from 3.64 µM (towards CCRF-CEM leukemia cells) to 16.86 µM (against the BRAF-wildtype SKMel-505 melanoma cells for SCHL). Collateral sensitivity of the resistant HCT116 p53-/- colon adenocarcinoma cells to SCHL was observed as well as the normal sensitivity of CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells and U87. MGΔEGFR glioblastoma cells. SCHL induced apoptosis in CCRF-CEM cells via caspases 3/7-, 8- and 9-activation, MMP alteration and increased ROS production, and otherwise ferroptosis and necroptosis. SCHL is a prominent cytotoxic alkaloid that should be further studied to develop a novel drug to combat cancers including refractory phenotypes.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Regulada/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Necroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Oncol Rep ; 44(6): 2406-2418, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125139

RESUMO

Oxidoreductase protein disulphide isomerases (PDI) are involved in the regulation of a variety of biological processes including the modulation of endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER­mitochondria communication and the balance between pro­survival and pro­death pathways. In the current study the role of the PDIA1 family member in breast carcinogenesis was investigated by measuring ROS generation, mitochondrial membrane disruption, ATP production and HLA­G protein levels on the surface of the cellular membrane in the presence or absence of PDIA1. The results showed that this enzyme exerted pro­apoptotic effects in estrogen receptor (ERα)­positive breast cancer MCF­7 and pro­survival in triple negative breast cancer (TNBC) MDA­MB­231 cells. ATP generation was upregulated in PDIA1­silenced MCF­7 cells and downregulated in PDIA1­silenced MDA­MB­231 cells in a manner dependent on the cellular redox status. Furthermore, MCF­7 and MDA­MB­231 cells in the presence of PDIA1 expressed higher surface levels of the non­classical human leukocyte antigen (HLA­G) under oxidative stress conditions. Evaluation of the METABRIC datasets showed that low PDIA1 and high HLA­G mRNA expression levels correlated with longer survival in both ERα­positive and ERα­negative stage 2 breast cancer patients. In addition, analysis of the PDIA1 vs. the HLA­G mRNA ratio in the subgroup of the living stage 2 breast cancer patients exhibiting low PDIA1 and high HLA­G mRNA levels revealed that the longer the survival time of the ratio was high PDIA1 and low HLA­G mRNA and occurred predominantly in ERα­positive breast cancer patients whereas in the same subgroup of the ERα­negative breast cancer mainly this ratio was low PDIA1 and high HLA­G mRNA. Taken together these results provide evidence supporting the view that PDIA1 is linked to several hallmarks of breast cancer pathways including the process of antigen processing and presentation and tumor immunorecognition.


Assuntos
Neoplasias da Mama/imunologia , Carcinogênese/imunologia , Antígenos HLA-G/metabolismo , Estresse Oxidativo/imunologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Apresentação de Antígeno , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos HLA-G/genética , Antígenos HLA-G/imunologia , Humanos , Estimativa de Kaplan-Meier , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Oxirredução , Estresse Oxidativo/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
13.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105548

RESUMO

MPP+ is the active metabolite of MPTP, a molecule structurally similar to the herbicide Paraquat, known to injure the dopaminergic neurons of the nigrostriatal system in Parkinson's disease models. Within the cells, MPP+ accumulates in mitochondria where it inhibits complex I of the electron transport chain, resulting in ATP depletion and neuronal impairment/death. So far, MPP+ is recognized as a valuable tool to mimic dopaminergic degeneration in various cell lines. However, despite a large number of studies, a detailed characterization of mitochondrial respiration in neuronal cells upon MPP+ treatment is still missing. By using high-resolution respirometry, we deeply investigated oxygen consumption related to each respiratory state in differentiated neuroblastoma cells exposed to the neurotoxin. Our results indicated the presence of extended mitochondrial damage at the inner membrane level, supported by increased LEAK respiration, and a drastic drop in oxygen flow devoted to ADP phosphorylation in respirometry measurements. Furthermore, prior to complex I inhibition, an enhancement of complex II activity was observed, suggesting the occurrence of some compensatory effect. Overall our findings provide a mechanistic insight on the mitochondrial toxicity mediated by MPP+, relevant for the standardization of studies that employ this neurotoxin as a disease model.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Difosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Respiração
14.
Physiology (Bethesda) ; 35(5): 302-327, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783608

RESUMO

Members of the mitochondrial carrier family (SLC25) transport a variety of compounds across the inner membrane of mitochondria. These transport steps provide building blocks for the cell and link the pathways of the mitochondrial matrix and cytosol. An increasing number of diseases and pathologies has been associated with their dysfunction. In this review, the molecular basis of these diseases is explained based on our current understanding of their transport mechanism.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Transporte Biológico , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos/genética
15.
Cancer Invest ; 38(8-9): 463-475, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32772580

RESUMO

In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel COX-2 inhibitor 2-(4-(Methylsulfonyl)phenyl)imidazo[1,2-a] pyridine-8-carboxylic acid on B-lymphocytes and their mitochondria isolated from normal subjects and acute lymphoblastic leukemia (ALL) patients' blood. Our results showed this compound can selectively induce cellular and mitochondrial toxicity on ALL B-lymphocytes and mitochondria without any toxic effects on normal B-lymphocytes and their mitochondria. Taken together, the results of this study suggest that cancerous mitochondria are a potential target for the ALL B-lymphocytes. Selective toxicity of COX-2 inhibitor in cancerous mitochondria could be an attractive therapeutic option for the effective clinical management of therapy-resistant ALL.


Assuntos
Linfócitos B/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Citocromos c/metabolismo , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
16.
Environ Toxicol ; 35(12): 1386-1394, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32667124

RESUMO

Naringenin (NGEN), a natural flavonoid has growth inhibition and apoptosis-inducing activities in several cancer cells. However, the cytotoxicity mechanisms of NGEN in cell death of lung cancer cells have not been fully defined. In present study, treatment of human lung adenocarcinoma A549 cells with NGEN resulted in time- and dose-dependent decreases in cell viability. Moreover, NGEN significantly induced apoptosis evidenced by morphological changes, DAPI staining, TUNEL assay and sub-G1 population increase. In NGEN-treated cells, intensely upregulated Bax and down-regulated Bcl-2 proteins were detected and the Bax protein associated with the mitochondrial membrane was analyzed by subcellular fractionation. Knockdown of the Bax expression by the shRNA method dramatically protected A549 cells against NGEN-induced apoptosis. Treatment with the inhibitors of caspase-3, -8, or -9 significantly reduced NGEN-induced apoptotic deaths. Taken together, our results demonstrate that NGEN-induced apoptosis may occur via a Bax-activated mitochondrial pathway in lung adenocarcinoma A549 cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Fatores de Tempo
17.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717981

RESUMO

The discovery of cytotoxic drugs is focused on designing a compound structure that directly affects cancer cells without an impact on normal cells. The mechanism of anticancer activity is mainly related with activation of apoptosis. However, recent scientific reports show that autophagy also plays a crucial role in cancer cell progression. Thus, the objective of this study was to synthesize 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine utilizing nucleophilic substitution reaction at the position N1. The biological activity of tested compounds was assessed in DLD-1 and HT-29 cell lines. The induction of apoptosis was confirmed by Annexin V binding assay and acridine orange/ethidium bromide staining. The loss of mitochondrial membrane potential and caspase-8 activity was estimated using cytometer flow analysis. The concentration of p53, LC3A, LC3B and beclin-1 was measured using the ELISA technique. Our study revealed that anticancer activity of 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives is related with initiation of apoptosis occur on the intrinsic pathway with mitochondrial membrane decrease and extrinsic with increase of activity of caspase-8. Moreover, a decrease in beclin-1, LC3A, and LC3B were observed in two cell lines after treatment with novel compounds. This study showed that novel 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives might be a potential strategy in colon cancer treatment.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias do Colo , Triazinas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Caspase 8/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Proteínas de Neoplasias/metabolismo , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia
18.
Food Chem ; 328: 127174, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492604

RESUMO

This study investigated the effect of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on bovine muscle protein degradation during postmortem aging. Six crossbred cattle were studied to evaluate intracellular reactive oxygen species (ROS), antioxidant enzyme activity, lysosomal membrane stability, mitochondrial dysfunction-induced apoptosis, desmin and troponin-T degradation in both control and iron chelator desferrioxamine (DFO) groups. Results showed that lysosomal iron induced ROS accumulation and lysosomal membrane destabilization by decreasing the antioxidant enzyme activity (P < 0.05). Subsequently, lysosomal dysfunction mediated by iron increased mitochondrial membrane permeability and decreased mitochondrial membrane potential, thereby enhancing Bid and cytochrome c release and caspase-9/-3 activation (P < 0.05). Ultimately, lysosomal iron mediated lysosomal-mitochondrial apoptosis increased the postmortem bovine muscle desmin and troponin-T degradation (P < 0.05). The results indicated that lysosomal iron contributes to postmortem meat tenderization through the lysosomal-mitochondrial dysfunction-induced apoptosis pathway.


Assuntos
Ferro/metabolismo , Lisossomos/metabolismo , Proteínas de Carne/metabolismo , Mitocôndrias Musculares/patologia , Membranas Mitocondriais/patologia , Animais , Apoptose/efeitos dos fármacos , Autopsia , Bovinos , Permeabilidade da Membrana Celular , Citocromos c/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo
19.
Oncogene ; 39(21): 4257-4270, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32291414

RESUMO

The mitochondrial HSP70 chaperone mortalin (HSPA9/GRP75) is often upregulated and mislocalized in MEK/ERK-deregulated tumors. Here, we show that mortalin depletion can selectively induce death of immortalized normal fibroblasts IMR90E1A when combined with K-RasG12V expression, but not with wild-type K-Ras expression, and that K-RasG12V-driven MEK/ERK activity is necessary for this lethality. This cell death was attenuated by knockdown or inhibition of adenine nucleotide translocase (ANT), cyclophilin D (CypD), or mitochondrial Ca2+ uniporter (MCU), which implicates a mitochondria-originated death mechanism. Indeed, mortalin depletion increased mitochondrial membrane permeability and induced cell death in KRAS-mutated human pancreatic ductal adenocarcinoma (PDAC) and colon cancer lines, which were attenuated by knockdown or inhibition of ANT, CypD, or MCU, and occurred independently of TP53 and p21CIP1. Intriguingly, JG-98, an advanced MKT-077 derivative, phenocopied the lethal effects of mortalin depletion in K-RasG12V-expressing IMR90E1A and KRAS-mutated tumor cell lines in vitro. Moreover, JG-231, a JG-98 analog with improved microsomal stability effectively suppressed the xenograft of MIA PaCa-2, a K-RasG12C-expressing human PDAC line, in athymic nude mice. These data demonstrate that oncogenic KRAS activity sensitizes cells to the effects of mortalin depletion, suggesting that mortalin has potential as a selective therapeutic target for KRAS-mutated tumors.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Antineoplásicos/farmacologia , Morte Celular , Feminino , Células HCT116 , Proteínas de Choque Térmico HSP70/genética , Humanos , Camundongos , Camundongos Nus , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Permeabilidade , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Shock ; 54(6): 783-793, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32195921

RESUMO

Hepatic ischemia/reperfusion (I/R) injury is a major concern in liver surgery settings. Mitochondria are critical targets or the origin of tissue injury, particularly I/R injury. Mitophagy, a selective form of autophagy, is a fundamental process that removes damaged or unwanted mitochondria for mitochondrial quality control, but its role in hepatic I/R remains unclear. In the present study, we investigated the role of mitophagy in hepatic I/R by focusing on PTEN-induced putative kinase 1 (PINK1). Livers from 10-week-old mice and primary hepatocytes were subjected to in vivo hepatic I/R and in vitro hypoxia-reoxygenation (H/R), respectively. Analyses of oxidative stress, immunoblotting, and ATP generation showed that hepatic I/R leads to mitochondrial damage. Dysfunctional mitochondria promoted reactive oxygen species (ROS) production and apoptosis. Hepatic I/R led to decreases in the mitochondrial proteins COX4 and TOM20 and mitochondrial DNA and increases in the autophagy-related indicators LC3 and P62, which indicates that hepatic I/R promotes mitophagy. We found that I/R also leads to endoplasmic reticulum stress, which has frequent signal communication with mitochondria through the mitochondria-associated membranes (MAMs). We showed that the mitophagy-related proteins Parkin, Beclin, optineurin were enhanced in hepatic I/R. No significant change is in PINK1 but it translocated to MAMs region to initiate mitophagy. The silencing PINK1 by shRNA in cultured primary hepatocytes reduced the level of H/R-induced mitophagy, leading to the accumulation of dysfunctional mitochondria during H/R, increased production of ROS, mitochondria-induced apoptosis, and eventually hepatocyte death. Taken together, these findings indicate that PINK1-mediated mitophagy plays a key role in mitochondrial quality control and liver cell survival during I/R.


Assuntos
Hepatopatias , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Membranas Mitocondriais/enzimologia , Mitofagia , Proteínas Quinases/metabolismo , Traumatismo por Reperfusão , Animais , Ativação Enzimática , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/patologia , Transporte Proteico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA