Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Neurosci Lett ; 694: 74-79, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30472356

RESUMO

Energy metabolism is fundamental to maintain Central Nervous System homeostasis because of high requirement of adenosine triphosphate (ATP), that is necessary to sustain neuronal events. During aging, changes in brain bioenergetics may influence the recovery of cerebral tissue in coping with pathophysiological conditions and pharmacological treatments. For this reason, we have previously studied enzyme catalytic activities related to energy-yielding systems. In the present study, the maximum rates (Vmax) of some enzymatic activities related to energy consumption (ATPases) were evaluated on synaptic plasma membranes (S.P.M.) isolated from frontal cerebral cortex of male Wistar rats aged 2, 6, 12, 18 and 24 months, because of the key role of these enzymes in modulating presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: Na+, K+, Mg2+-ATPase; ouabain-insensitive Mg2+-ATPase; Na+, K+-ATPase; specific Mg2+-ATPase; Ca2+, Mg2+-ATPase; acetylcholinesterase (AChE). The present results show that both the activities of (i) ATPases and (ii) AChE were significantly decreased during aging. Comparing these observations with those previously done on rat striatum on the same functional parameters and in the same experimental settings, ATPases activities were influenced by the age factor in different ways, suggesting that the frontal cerebral cortex independently adapt to the different age-dependent biochemical situations at each single age. Overall, this experimental approach is therefore important to add pieces of information for the understanding of the correlation between aging and brain energy metabolism, and could be a suitable model to assess also drug effects, differentiating between different cerebral areas.


Assuntos
Adenosina Trifosfatases/metabolismo , Envelhecimento/metabolismo , Metabolismo Energético , Lobo Frontal/enzimologia , Membranas Sinápticas/enzimologia , Acetilcolinesterase/metabolismo , Animais , Masculino , Ratos Wistar
2.
Mol Neurobiol ; 55(7): 5868-5878, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29101646

RESUMO

S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency, who are clinically characterized by cerebral symptoms whose pathogenesis is still unknown. In the present work, we investigated the effects of AdoMet on redox homeostasis and on the activity of Na+, K+-ATPase in the cerebral cortex of young rats. AdoMet caused lipid peroxidation (increase of malondialdehyde concentrations) and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content). AdoMet also reduced the antioxidant defenses (reduced glutathione, GSH) and Na+, K+-ATPase activity. Furthermore, AdoMet-induced lipid peroxidation was fully prevented by the antioxidants trolox, melatonin, and resveratrol, and the decrease of GSH concentrations was abolished by trolox, suggesting the involvement of reactive oxygen species in these effects. In this context, AdoMet induced reactive oxygen (increase of 2',7'-dichloroflurescein-DCFH oxidation) but not nitrogen (nitrate and nitrite levels) species generation. Finally, the decrease of Na+, K+-ATPase activity provoked by AdoMet was totally prevented by trolox, implying a possible oxidation of cysteine groups of the enzyme that are critical for its function and highly susceptible to oxidative attack. It is also noted that adenosine and methionine did not alter the parameters evaluated, suggesting selective effects of AdoMet. Our data strongly indicate that disturbance of redox homeostasis caused by a major metabolite (AdoMet) accumulating in S-adenosylhomocysteine hydrolase deficiency may represent a deleterious mechanism of brain damage in this disease. Finally, reduction of Na+, K+-ATPase activity provoked by AdoMet may lead to impaired neurotransmission, but disturbance of this system should be better clarified in future studies.


Assuntos
Adenosil-Homocisteinase/deficiência , Envelhecimento/patologia , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Estresse Oxidativo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenosil-Homocisteinase/metabolismo , Animais , Antioxidantes/metabolismo , Homeostase , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Fluidez de Membrana , Oxirredução , Carbonilação Proteica , Ratos Wistar , S-Adenosilmetionina , Membranas Sinápticas/enzimologia
3.
Nutr Neurosci ; 18(2): 87-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24621059

RESUMO

Long chain n-3 fatty acids such as docosahexaenoic acid (DHA) are essential for the normal functioning of the brain. The vegetarian sections of the population get only alpha-linolenic acid (ALA) through their diet as a source of n-3 fatty acids. Hence, in this group of the population, the ALAs need to be converted to DHA through the action of the desaturase and the elongase enzymes. However, the conversion of the ALA to the DHA is very minimal (<2%) in mammals. Our recent studies have shown that the conversion of the ALA to the DHA can be enhanced significantly when given in the microemulsion forms. This work was undertaken to study the feasibility of enriching the synaptic membranes of rat brain with the DHA by providing the microemulsions of linseed oil (LSO) containing ALA. The rats were fed LSO as microemulsions in whey protein or in lipoid for 60 days through gavage. The rats given LSO microemulsions in lipoid showed higher levels of the DHA in the brain synaptic membrane when compared to rats given LSO without emulsion formation. This decreased the n-6/n-3 fatty acid ratio of the brain synaptic membrane. This also increased the membrane fluidity, Na⁺-K⁺ ATPase activity, and acetylcholine esterase activity in the synaptic membranes. Furthermore, Ca²âº-Mg²âº ATPase activity, monoamine oxidase A and monoamine oxidase B activity was lowered in the rats given LSO in the microemulsion form. The dopamine and the serotonin levels in the brain were increased in the rats given LSO in the microemulsion form with lipoid as compared to those given LSO without the preemulsion formation. This study indicates that the LSO microemulsions in the lipoid can enhance the synaptic membrane DHA levels and influence the functions associated with the brain in a beneficial manner.


Assuntos
Encéfalo/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Nootrópicos/administração & dosagem , Membranas Sinápticas/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/enzimologia , Dopamina/metabolismo , Emulsificantes/química , Emulsões , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Estudos de Viabilidade , Proteínas Ligadas por GPI/metabolismo , Óleo de Semente do Linho/química , Óleo de Semente do Linho/metabolismo , Óleo de Semente do Linho/uso terapêutico , Masculino , Fluidez de Membrana , Proteínas do Leite/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Nootrópicos/química , Nootrópicos/metabolismo , Nootrópicos/uso terapêutico , Distribuição Aleatória , Ratos Wistar , Serotonina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membranas Sinápticas/enzimologia , Proteínas do Soro do Leite
4.
Neurosci Lett ; 582: 104-8, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25220701

RESUMO

This study aimed to explore the possible mechanisms underlying the antidepressant-like effect of YL-0919, a novel antidepressant candidate with dual activity as a 5-HT1A receptor agonist and a selective serotonin reuptake inhibitor. The animal models commonly used to evaluate potential antidepressants, i.e., tail suspension (TST) in mice and forced swimming test (FST) in mice were used to evaluate the antidepressant effect of YL-0919. The activity of adenylate cyclase (AC) on the synaptic membrane was determined by the homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay. The results indicated that YL-0919 (1.25-2.5mg/kg, i.g.) significantly decreased the immobility time in both the tail suspension test and the forced swim test in a dose-dependent manner, demonstrating the antidepressant-like effect of YL-0919. Furthermore, this effect was completely antagonized by the co-administration of WAY-100635 (0.3mg/kg, s.c.), a 5-HT1A selective antagonist. YL-0919 (10(-9)-10(-5)mol/L) was also shown to activate AC in vitro in a dose-dependent manner in synaptic membranes extracted from the rat prefrontal cortex, and this effect (10(-7)-10(-5)mol/L) was antagonized by WAY-100635 (10(-7)mol/L). Finally, the antidepressant-like effect of YL-0919 (2.5mg/kg, i.g.) was also blocked by the co-administration of H-89 (3 µg/site, i.c.v.), a protein kinase A (PKA) selective inhibitor. These results indicate that the activation of 5-HT1A receptors and the subsequent activation of the AC-cAMP-PKA signaling pathway in the frontal cortex play a critical role in the antidepressant-like effect of YL-0919.


Assuntos
Adenilil Ciclases/metabolismo , Antidepressivos/farmacologia , Piperidinas/farmacologia , Piridonas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , AMP Cíclico/metabolismo , Ativação Enzimática , Masculino , Camundongos Endogâmicos ICR , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Transdução de Sinais , Membranas Sinápticas/enzimologia
5.
J Mol Neurosci ; 54(1): 109-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24563227

RESUMO

Ecto-5'-nucleotidase (e-5NT), a glycosylphosphatidylinositol-linked membrane protein, catalyzes a conversion of AMP to adenosine, which influences nearly every aspect of brain physiology, including embryonic and postnatal brain development. The present study aimed to investigate a pattern of expression, activity and kinetic properties of e-5NT in the hippocampal formation and synaptic plasma membrane (SPM) preparations in rats at postnatal days (PDs) 7, 15, 20, 30 and 90. By combining gene expression analysis and enzyme histochemistry, we observed that e-5NT mRNA reached the adult level at PD20, while the enzyme activity continued to increase beyond this age. Further analysis revealed that hippocampal layers rich in synapses expressed the highest levels of e-5NT activity, while in layers populated with neuronal cell bodies, the enzyme activity was weak or absent. Therefore, activity and expression of e-5NT were analyzed in SPM preparations isolated from rats at different ages. The presence of two protein bands of about 65 and 68 kDa was determined by immunoblot analysis. The 65-kDa band was present at all ages, and its abundance increased from PD7 to PD20. The 68-kDa band appeared at PD15 and increased until PD30, coinciding with the increase of e-5NT activity, substrate affinity and enzymatic efficiency. Since distinct e-5NT isoforms may derive from different patterns of the enzyme protein N-glycosylation, we speculate that long-term regulation of e-5NT activity in adulthood may be effectuated at posttranslational level and without overall change in the gene and protein expression.


Assuntos
5'-Nucleotidase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Membranas Sinápticas/metabolismo , 5'-Nucleotidase/genética , Animais , Hipocampo/enzimologia , Hipocampo/crescimento & desenvolvimento , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Membranas Sinápticas/enzimologia
6.
Metab Brain Dis ; 28(3): 493-500, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475280

RESUMO

Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. Clinically, the disease is characterized by progressive neurological deterioration and renal failure, whose pathophysiology is still undefined. In the present study we investigated the effect of acute MMA administration on some important parameters of brain neurotransmission in cerebral cortex of rats, namely Na(+), K(+)-ATPase, ouabain-insensitive ATPases and acetylcholinesterase activities, in the presence or absence of kidney injury induced by gentamicin administration. Initially, thirty-day old Wistar rats received one intraperitoneal injection of saline or gentamicin (70 mg/kg). One hour after, the animals received three consecutive subcutaneous injections of MMA (1.67 µmol/g) or saline, with an 11 h interval between each injection. One hour after the last injection the animals were killed and the cerebral cortex isolated. MMA administration by itself was not able to modify Na(+), K(+)-ATPase, ATPases ouabain-insensitive or acetylcholinesterase activities in cerebral cortex of young rats. In rats receiving gentamicin simultaneously with MMA, it was observed an increase in the activity of acetylcholinesterase activity in cerebral cortex, without any alteration in the activity of the other studied enzymes. Therefore, it may be speculated that cholinergic imbalance may play a role in the pathogenesis of the brain damage. Furthermore, the pathophysiology of tissue damage cannot be exclusively attributed to MMA toxicity, and control of kidney function should be considered as a priority in the management of these patients, specifically during episodes of metabolic decompensation when MMA levels are higher.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores da Colinesterase , Ácido Metilmalônico/farmacologia , Insuficiência Renal/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos , Análise de Variância , Animais , Creatinina/sangue , Gentamicinas/toxicidade , Masculino , Degeneração Neural/patologia , Ouabaína/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos
7.
J Neurochem ; 123(5): 689-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889001

RESUMO

Precise regulation of free intracellular Ca(2+) concentrations [Ca(2+) ](i) is critical for normal neuronal function, and alterations in Ca(2+) homeostasis are associated with brain aging and neurodegenerative diseases. One of the most important proteins controlling [Ca(2+) ](i) is the plasma membrane Ca(2+) -ATPase (PMCA), the high-affinity transporter that fine tunes the cytosolic nanomolar levels of Ca(2+) . We previously found that PMCA protein in synaptic plasma membranes (SPMs) is decreased with advancing age and the decrease in enzyme activity is much greater than that in protein levels. In this study, we isolated raft and non-raft fractions from rat brain SPMs and used quantitative mass spectrometry to show that the specialized lipid microdomains in SPMs, the rafts, contain 60% of total PMCA, comprised all four isoforms. The raft PMCA pool had the highest specific activity and this decreased progressively with age. The reduction in PMCA protein could not account for the dramatic activity loss. Addition of excess calmodulin to the assay did not restore PMCA activity to that in young brains. Analysis of the major raft lipids revealed a slight age-related increase in cholesterol levels and such increases might enhance membrane lipid order and prevent further loss of PMCA activity.


Assuntos
Envelhecimento/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Microdomínios da Membrana/enzimologia , Membranas Sinápticas/enzimologia , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , ATPases Transportadoras de Cálcio/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Masculino , Espectrometria de Massas , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ratos , Ratos Endogâmicos F344 , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
8.
Bioorg Med Chem ; 19(23): 7063-9, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22047804

RESUMO

The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors.


Assuntos
Apirase/antagonistas & inibidores , Ácidos Fosfóricos/farmacologia , Ácido Silícico/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Compostos de Tungstênio/farmacologia , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Modelos Moleculares , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
9.
Biol Trace Elem Res ; 144(1-3): 951-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21559873

RESUMO

Mn(2+) stimulated change of Mg-ATPase activity has been found in the synaptic fraction of rat brain that was named Mn-ATPase. Investigation of the molecular mechanism has shown that Mn-ATPase is a multi-sited enzyme system whose minimum functional unit is a dimer. Its substrate is the MgATP complex. The number of sites for Mn(2+) as for essential activators and that of full-effect inhibitors are equal, n = m = 1. Studying regulation of the Mn-ATPase system by Mg(2+) has shown that Mg(2+) represents a double-sided effect modifier, namely, it activates the enzyme system at low concentration but inhibits at high concentration. Supposedly, binding-release of MgATP and Mg(2+) from the enzyme would be performed by a randomized mechanism. When analyzing experiments by using the kinetic method of complex curves, a "minimal model" for Mn-ATPase has been created.


Assuntos
Adenosina Trifosfatases/metabolismo , Encéfalo/enzimologia , ATPase de Ca(2+) e Mg(2+)/metabolismo , Membranas Sinápticas/enzimologia , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , ATPase de Ca(2+) e Mg(2+)/antagonistas & inibidores , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Cinética , Modelos Biológicos , Ratos
10.
Neurochem Res ; 36(8): 1372-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21479591

RESUMO

The maximum rates (V (max)) of some enzymatic activities related to energy consumption (ATP-ases) were evaluated in two types of synaptic plasma membranes (SPM) isolated from cerebral cortex of rats subjected to in vivo treatment with L: -acetylcarnitine at two different doses (30 and 60 mg kg(-1) i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; direct Mg(2+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase; Low- and High-affinity Ca(2+)-ATP-ase. Sub-chronic treatment with L: -acetylcarnitine increased Na(+), K(+)-ATP-ase activity on SPM 2 and Ca(2+), Mg(2+)-ATP-ase activity on both SPM fractions. These results suggest (1) that the sensitivity to drug treatment is different between the two populations of SPM, confirming the micro-heterogeneity of these sub-fractions, probably originating from different types of synapses, (2) the specificity of the molecular site of action of the drug on SPM and (3) its interference on ion homeostasis at synaptic level.


Assuntos
Acetilcarnitina/farmacologia , Adenosina Trifosfatases/metabolismo , Córtex Cerebral/citologia , Nootrópicos/farmacologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Acetilcolinesterase/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
11.
Int J Dev Neurosci ; 29(4): 397-403, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414400

RESUMO

Ecto-5'-nucleotidase (CD73; EC 3.1.3.5, e-5NT) is regarded as the key enzyme in the extracellular formation of adenosine, which acts as a neuromodulator and important trophic and homeostatic factor in the brain. In the present study, we have investigated e-5NT activity, kinetic properties concerning AMP hydrolysis and the enzyme protein abundance in the purified synaptic plasma membrane (SPM) preparations isolated from whole female rat brain at different ages. We observed pronounced increase in AMP hydrolyzing activity in SPM during maturation, with greatest increment between juvenile (15-day-old) and pre-pubertal (30-day-old) rats. Immunodetection of e-5NT protein in the SPM displayed the reverse pattern of expression, with the maximum relative abundance at juvenile and minimum relative abundance in the adult stage. Negative correlation between the enzyme activity and the enzyme protein abundance in the SPM indicates that e-5NT has additional roles in the synaptic compartment during postnatal brain development, other than those related to AMP hydrolysis. Determination of kinetic parameters, K(m) and V(max), suggested that the increase in the enzyme activity with maturation was entirely due to the increase in the enzyme catalytic efficiency (V(max)/K(m)). Finally, double immunofluorescence staining against e-5NT and presynaptic membrane marker syntaxin provided first direct evidence for the existence of this ecto-enzyme in the presynaptic compartment. The results of the study suggest that e-5NT may be a part of general scheme of brain development and synapse maturation and provide rationale for the previously reported inconsistencies between enzyme immunohistochemical and biochemical studies concerning localization of e-5NT in the brain.


Assuntos
5'-Nucleotidase/metabolismo , Encéfalo/citologia , Membrana Celular/enzimologia , Membranas Sinápticas/enzimologia , Fatores Etários , Animais , Encéfalo/enzimologia , Feminino , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Wistar
12.
Int J Dev Neurosci ; 29(1): 1-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21050883

RESUMO

3-Methylglutaconic aciduria (MGTA) comprehends a group of disorders biochemically characterized by accumulation of 3-methylglutaric acid (MGA), 3-methylglutaconic acid (MGT) and occasionally 3-hydroxyisovaleric acid (OHIVA). Although neurological symptoms are common in the affected individuals, the mechanisms of brain damage are poorly known. In the present study we investigated the in vitro effect MGA, MGT and OHIVA, at concentrations ranging from 0.1 to 5.0mM, on bioenergetics and oxidative stress in synaptosomal preparations isolated from cerebral cortex of young rats. MGA significantly reduced mitochondrial redox potential (25%), as determined by resazurin reduction, and inhibited the activity of Na(+),K(+)-ATPase (30%), whereas MGT and OHIVA did not modify these parameters. Moreover, the inhibitory effect elicited by MGA on Na(+),K(+)-ATPase activity was totally prevented by co-incubation with the scavenging antioxidants creatine and melatonin, implying a role for reactive species in this effect. MGA also increased 2',7'-dichlorofluorescein (DCFH) oxidation (30%), reinforcing that this organic acid induces reactive species production. The present data indicate that MGA compromises mitochondrial function, elicits reactive species production and inhibits the activity of a crucial enzyme implicated in neurotransmission. It is therefore presumed that these deleterious effects may play a role in the pathophysiology of the brain damage observed in patients affected by disorders in which MGA accumulates.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Meglutol/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Animais , Glutaratos/metabolismo , Glutaratos/farmacologia , Humanos , Masculino , Meglutol/metabolismo , Meglutol/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Wistar , Valeratos/metabolismo , Valeratos/farmacologia
13.
J Neurochem ; 114(3): 886-96, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20492353

RESUMO

How synaptic vesicles (SVs) are localized to the pre-active zone (5-200 nm beneath the active zone) in the nerve terminal, which may represent the slow response SV pool, is not fully understood. Electron microscopy revealed the number of SVs located in the pre-active zone, was significantly decreased in hypothalamic neurons of carboxypeptidase E knockout (CPE-KO) mice compared with wild-type mice. Additionally, we found K(+)-stimulated glutamate secretion from hypothalamic embryonic neurons was impaired in CPE-KO mice. Biochemical studies indicate that SVs from the hypothalamus of wild-type mice and synaptic-like microvesicles from PC12 cells contain a transmembrane form of CPE, with a cytoplasmic tail (CPE(C10)), maybe involved in synaptic function. Yeast two-hybrid and pull-down experiments showed that the CPE cytoplasmic tail interacted with gamma-adducin, which binds actin enriched at the nerve terminal. Total internal reflective fluorescence (TIRF) microscopy using PC12 cells as a model showed that expression of GFP-CPE(C15) reduced the steady-state level of synaptophysin-mRFP containing synaptic-like microvesicles accumulated in the area within 200 nm from the sub-plasma membrane (TIRF zone). Our findings identify the CPE cytoplasmic tail, as a new mediator for the localization of SVs in the actin-rich pre-active zone in hypothalamic neurons and the TIRF zone of PC12 cells.


Assuntos
Carboxipeptidase H/fisiologia , Hipotálamo/enzimologia , Terminações Pré-Sinápticas/enzimologia , Vesículas Sinápticas/enzimologia , Actinas/metabolismo , Animais , Carboxipeptidase H/química , Carboxipeptidase H/genética , Carboxipeptidase H/ultraestrutura , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Hipotálamo/ultraestrutura , Camundongos , Camundongos Knockout , Células PC12 , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Membranas Sinápticas/enzimologia , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Sinaptossomos
14.
J Neurosci ; 30(8): 2844-55, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181582

RESUMO

Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium-impermeable (CI)-AMPA receptors (AMPARs). Here, we demonstrate that HFS-induced LTP at these MF-interneuron synapses requires postsynaptic activation of protein kinase A (PKA) and protein kinase C (PKC). Brief extracellular stimulation of PKA with forskolin (FSK) alone or in combination with 1-Methyl-3-isobutylxanthine (IBMX) induced a long-lasting synaptic enhancement at MF synapses predominantly containing CI-AMPARs. However, the FSK/IBMX-induced potentiation in cells loaded with the specific PKA inhibitor peptide PKI(6-22) failed to be maintained. Consistent with these data, delivery of HFS to MFs synapsing onto L-M interneurons loaded with PKI(6-22) induced posttetanic potentiation (PTP) but not LTP. Hippocampal sections stained for the catalytic subunit of PKA revealed abundant immunoreactivity in interneurons located in strata radiatum and L-M of area CA3. We also found that extracellular activation of PKC with phorbol 12,13-diacetate induced a pharmacological potentiation of the isolated CI-AMPAR component of the MF EPSP. However, HFS delivered to MF synapses on cells loaded with the PKC inhibitor chelerythrine exhibited PTP followed by a significant depression. Together, our data indicate that MF LTP in L-M interneurons at synapses containing primarily CI-AMPARs requires some of the same signaling cascades as does LTP of glutamatergic input to CA3 or CA1 pyramidal cells.


Assuntos
Região CA3 Hipocampal/enzimologia , Interneurônios/enzimologia , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/enzimologia , Proteínas Quinases/metabolismo , Transmissão Sináptica/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Benzofenantridinas/farmacologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/fisiologia , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/farmacologia , Ésteres de Forbol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Quinases/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Transmissão Sináptica/efeitos dos fármacos
15.
Biochem J ; 427(1): 151-9, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20100168

RESUMO

Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes.


Assuntos
Encéfalo/enzimologia , Membrana Celular/enzimologia , Eletrofisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Membranas Sinápticas/enzimologia , Vesículas Sinápticas/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
16.
J Biol Chem ; 284(38): 25782-90, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19632989

RESUMO

The cGMP-stimulated PDE2A hydrolyzes both cyclic nucleotides, cGMP and cAMP. Three splice variants have been cloned from several species. Whereas PDE2A1 is soluble, PDE2A2 and PDE2A3 are membrane-bound enzymes of rat and bovine origin, respectively. To date it is unclear whether one species expresses all three variants. The splice variants only differ in their N termini, which likely determine the subcellular localization. However, the mechanism for membrane attachment remains unknown. Here, we show that myristoylation underlies membrane targeting of PDE2A3. The myristoylated enzyme was bound to plasma membranes, whereas mutation of the myristoyl recipient Gly2 prevented incorporation of [3H]myristate and turned PDE2A3 completely soluble. Additionally, Cys5 and to a minor extent Cys11 are required for targeting of PDE2A3. Substitution of the putatively palmitoylated cysteines partially solubilized the enzyme and led to an accumulation in the endoplasmic reticulum/Golgi compartment, as shown by fluorescence microscopy in HEK 293 and PC12 cells. In vivo, PDE2A is expressed in many tissues. By using newly generated antibodies selectively detecting the splice variants PDE2A3 or PDE2A1, respectively, we demonstrate on the protein level PDE2A3 expression in mouse brain where it is entirely membrane-associated and a widespread expression of soluble PDE2A1 in mouse tissues. We show that PDE2A localizes to synaptosomal membranes and in primary cultures of hippocampal neurons partially overlaps with the presynaptic marker synaptophysin as demonstrated by immunofluorescence. In sum, these results demonstrate dual acylation as mechanism targeting neuronal PDE2A3 to synapses thereby ensuring local control of cyclic nucleotides.


Assuntos
Processamento Alternativo/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipocampo/enzimologia , Membranas Sinápticas/enzimologia , Acilação/fisiologia , Substituição de Aminoácidos , Animais , Bovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Mutação , Ácido Mirístico/metabolismo , Células PC12 , Ratos , Membranas Sinápticas/genética
17.
Neurochem Res ; 34(12): 2226-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19562485

RESUMO

Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 x 10(-6) M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.


Assuntos
Clozapina/farmacologia , Neurotensina/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/enzimologia , Animais , Córtex Cerebral/enzimologia , Dopamina/farmacologia , Ratos , Ratos Wistar , Receptores de Dopamina D2/fisiologia , Membranas Sinápticas/enzimologia , Sinaptossomos/efeitos dos fármacos
18.
Int J Dev Neurosci ; 26(3-4): 293-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18329219

RESUMO

3-Hydroxyisobutyric aciduria is an inherited metabolic disease caused by 3-hydroxyisobutyryl-CoA dehydrogenase deficiency. Tissue accumulation and high urinary excretion of 3-hydroxyisobutyric acid is the biochemical hallmark of this disorder. Clinical phenotype is heterogeneous and generally includes dysmorphic features, delayed motor development, profound mental impairment, and acute encephalopathy. Lactic acidemia is also found in the affected patients, indicating that mitochondrial dysfunction may be involved in the pathophysiology of this disorder. Therefore, the aim of the present work was to investigate the in vitro effect of 3-hydroxyisobutyric acid (0.1, 0.5 and 1mM) on essential enzymes of energy metabolism, namely the activities of the respiratory chain complexes I-V, total, cytosolic and mitochondrial creatine kinase and Na(+), K(+)-ATPase in cerebral cortex homogenates of 30-day-old rats. We also measured the rate of oxygen consumption in brain mitochondrial preparations in the presence of 3-hydroxyisobutyric acid. 3-Hydroxyisobutyric acid significantly reduced complex I-III (20%), without affecting the other activities of the electron transport chain. Furthermore, 3-hydroxyisobutyric acid did not change state III, state IV and the respiratory control ratio in the presence of glutamate/malate or succinate, suggesting that its effect on cellular respiration was weak. On the other hand, the activities of total and mitochondrial creatine kinase, but not cytosolic creatine kinase, were inhibited (30%) by 3-hydroxyisobutyric acid. We also observed that 3-hydroxyisobutyric acid-induced inhibition of mitochondrial creatine kinase activity was fully prevented by pre-incubation of the homogenates with reduced glutathione, alpha-tocopherol or the combination of superoxide dismutase plus catalase, suggesting that this inhibition was mediated by oxidation of essential thiol groups of the enzyme probably by superoxide, hydrogen peroxide and/or peroxyl radicals. It was also demonstrated that Na(+), K(+)-ATPase activity from synaptic plasma membranes was markedly suppressed (37%) by 3-hydroxyisobutyric acid and that this effect was prevented by alpha-tocopherol co-incubation implying that peroxyl radicals were probably involved in this action. Considering the importance of the affected enzyme activities for brain metabolism homeostasis and neurotransmision, it is suggested that increased tissue levels of 3-hydroxyisobutyric acid may contribute to the neurodegeneration of patients affected by 3-hydroxyisobutyric aciduria and possibly explain previous reports describing elevated production and excretion of lactate.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Encefalopatias Metabólicas Congênitas/enzimologia , Córtex Cerebral/enzimologia , Metabolismo Energético/fisiologia , Ácido 3-Hidroxibutírico/farmacologia , Envelhecimento/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Química Encefálica/efeitos dos fármacos , Encefalopatias Metabólicas Congênitas/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Córtex Cerebral/efeitos dos fármacos , Creatina Quinase/efeitos dos fármacos , Creatina Quinase/metabolismo , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Frações Subcelulares , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia
19.
Curr Neurovasc Res ; 4(4): 259-67, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18045151

RESUMO

Thyroid hormones (THs) have a relevant action on brain development and maintenance. By using an acute treatment to induce a hyperthyroid animal model, we aimed at investigating the effect of an altered THs levels on learning and memory and on the activity of Na(+), K(+)-ATPase in the rat brain. Our results have shown that the acute treatment with L-T4 did not alter the retrieval of the inhibitory avoidance task, but had a significant effect on the elevated plus maze and on open-field performance in rats. We suggest that animals subjected to L-T4 administration improved the habituation to a novel environment as well as a better evaluation of a dangerous environment, respectively. Na(+), K(+)-ATPase activity is increased in parietal cortex (30%), but it is not altered in hippocampus in L-T4 treated group. These both brain structures are involved in memory processing and it was previously demonstrated that there is a double dissociation between them for spatial location information, perceptual and episodic memory. We propose the hypothesis that this increase of Na(+), K(+)-ATPase activity in parietal cortex may be correlated to our results in behavior tests, which suggest a role of THs as well as of the Na(+), K(+)-ATPase in the cognitive process.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Habituação Psicofisiológica/efeitos dos fármacos , Memória/efeitos dos fármacos , Assunção de Riscos , ATPase Trocadora de Sódio-Potássio/metabolismo , Tiroxina/farmacologia , Animais , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Atividade Motora/efeitos dos fármacos , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/enzimologia , Ratos , Ratos Wistar , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Hormônios Tireóideos/sangue , Tiroxina/sangue
20.
Ross Fiziol Zh Im I M Sechenova ; 93(3): 248-54, 2007 Mar.
Artigo em Russo | MEDLINE | ID: mdl-17598467

RESUMO

The effect of profound hypothermia (acute or prolonged) on Km for ATP, Vm and strophanthine K affinity to Na,K-ATPase in the rat brain synaptosomal membranes was investigated. The temperature dependence of Na,K-ATPase activity in temperature range 5-40 degrees C was also studied. Hypothermia decreases Km and Vm, and increases affinity of strophanthine K to the enzyme. There are two linear sections in Arrhenius plots ofNa,K-ATPase activity. Hypothermia does not change position of the break point in Arrhenius plots. The mechanisms and biological significance of the changes revealed are discussed.


Assuntos
Encéfalo/enzimologia , Hipotermia/enzimologia , Membranas Sinápticas/enzimologia , Animais , Cardiotônicos/farmacologia , Cinética , Masculino , Ratos , ATPase Trocadora de Sódio-Potássio , Estrofantinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA