Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PeerJ ; 11: e16025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904849

RESUMO

Background: Wilms' tumor (WT) is one of the most common solid tumors in children with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. Many genes are associated with the occurrence and prognosis of WT. This study aimed to explore the key genes and potential molecular mechanisms through bioinformatics and to verify the effects of aquaporin 1 (AQP1) on WT metastasis. Methods: Differentially expressed genes (DEGs) were generated from WT gene expression data sets from the Gene Expression Omnibus (GEO) database. Gene functional enrichment analysis was carried out with the Database for Annotation, Visualization and Integrated Discovery (DAVID). A protein-protein interaction network (PPI) was constructed and visualized by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape software. Minimal Common Oncology Data Elements (MCODE) was used to detect the important modules in the PPI network, and the important nodes (genes) in the PPI module were sorted by CytoHubba. RT-qPCR was performed to validate the expression of the key genes in WT. Wound healing and Transwell assays were used to detect the cell migration and invasion abilities of AQP1-overexpressing cells. Phalloidin-iFlour 488 was used to stain the cytoskeleton to observe how AQP1 overexpression affects cytoskeletal microfilament structure. Results: A total of 73 co-expressed DEGs were chosen for further investigation. The importance of homeostasis and transmembrane transport of ions and water were highlighted by functional analysis. Gene regulatory network and PPI network were predicted. MCODE plug identified two important modules. Finally, top five key genes were identified using CytoHubba, including Renin (REN), nephrosis 2 (NPHS2), Solute Carrier Family 12 Member 3 (SLC12A3), Solute Carrier Family 12 Member 1 (SLC12A1) and AQP1. The five key genes were mainly enriched in cell volume and ion homeostasis. RT-qPCR confirmed the expression of the five key genes in WT. AQP1 was validated to be expressed at significantly lower levels in WT than in normal tissue. AQP1 overexpression significantly reduced the migratory and invasive capacity of Wit-49 cells, as evidenced by reducing the scratch healing rate and the number of perforated control cells by Wit-49 cells. AQP1 overexpression also reduced the expression of biomarkers of epithelial-mesenchymal transformation, decreased levels of vimentin and N-cadherin and increased expression of E-cadherin, resulting in decreased formation of conspicuous lamellipodial protrusions, characteristic of diminished WT cell invasion and migration. Conclusion: Our study reveals the key genes of WT. These key genes may provide novel insight for the mechanism and diagnosis of WT. AQP1 overexpression inhibited invasion, migration, EMT, and cytoskeletal rearrangement of WT cells, indicating that AQP1 plays a role in the pathogenesis of WT.


Assuntos
Perfilação da Expressão Gênica , Tumor de Wilms , Criança , Humanos , Aquaporina 1/genética , Biomarcadores , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Tumor de Wilms/genética
2.
J Diabetes Res ; 2023: 9053580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187702

RESUMO

Diabetic nephropathy is a multifactorial disease. Gene susceptibility, as well as environmental exposure, plays an important role in disease progression. Malaysia is reported to be among the world's second-fastest-growing rates of kidney failure. Diabetic nephropathy has become the main cause of end-stage renal disease in Malaysia. This article is aimed at reviewing genetic studies conducted among diabetic nephropathy patients in the Malaysian population. This review was conducted by searching PubMed, MEDLINE, and Google Scholar databases to identify all relevant papers published in English from March 2022 to April 2022, using the following keywords: diabetes, type 2 diabetes, diabetic nephropathy, diabetic kidney disease, and Malaysia. The case-control study among diabetic patients with and without diabetic nephropathy showed a significant association with diabetic nephropathy in CNDP1, NOS3, and MnSOD genes. In the ethnic subgroup analysis, significant differences for diabetic nephropathy in terms of diabetes duration (≥10 years) were observed for CCL2 rs3917887, CCR5 rs1799987, ELMO1 rs74130, and IL8 rs4073. The IL8 rs4073 was associated only with the Indians, while the CCR5 rs1799987 was associated with the Chinese. In Malays, SLC12A3 Arg913Gln polymorphism and ICAM1 K469E (A/G) polymorphism were found to be associated with diabetic nephropathy. Studies on gene-environment interactions have suggested significant genetic and environmental factors such as smoking, waist circumference, and sex for eNOS rs2070744, PPARGC1A rs8192678, KCNQ1 rs2237895, and KCNQ1 rs2283228 with kidney disease. The genetic variants' contributions differed across ethnic groups. Therefore, a study to validate the genetic variants that are found to be associated with different ethnicities in Malaysia may be important in future studies.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Malásia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Interleucina-8/genética , Estudos de Casos e Controles , Canal de Potássio KCNQ1/genética , Predisposição Genética para Doença , Epigênese Genética , Polimorfismo de Nucleotídeo Único , Membro 3 da Família 12 de Carreador de Soluto/genética
3.
Lab Invest ; 103(3): 100022, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925204

RESUMO

Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.


Assuntos
Melanoma , MicroRNAs , Neoplasias Uveais , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Regulação para Cima , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo
4.
Clin Endocrinol (Oxf) ; 99(5): 474-480, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562655

RESUMO

OBJECTIVE: Gitelman syndrome (GS) is an autosomal recessive tubulopathy resulting from inactivating mutations in the SLC12A3 gene that encodes the thiazide-sensitive sodium-chloride cotransporter (NCC). To date, more than 500 mutations have been identified in the SLC12A3 gene. In this study, we identified two new mutations in the SLC12A3 gene in two Chinese GS pedigrees. DESIGN, PATIENTS AND MEASUREMENTS: The clinical characteristics and laboratory examination of two suspected GS patients in our hospital were analyzed. In addition, two pedigrees including 11 members and 2 patients underwent SLC12A3 gene analysis. RESULTS: Both patients were middle-aged women with characteristics of hypokalemic metabolic alkalosis, hypomagnesemia, low level of urinary calcium and the elevated levels of renin-angiotensin-aldosterone system. So, they were clinically diagnosed as GS. Patient 2 also had type 2 diabetes and Graves' disease. Both patients were found to carry two mutations of SLC12A3 gene by Sanger direct sequencing, which were all compound heterozygous mutations. We identified three mutations in these two Chinese GS pedigrees, one of which was c.179C>T (Thr60Met). The novel c.2159G>T (p. Gly720Val) and c.2675T>C (p. Leu892Pro) mutations were strongly predicted to be pathogenic using four network programs-Polyphen-2, SIFT, Mutation Taster and LRT. CONCLUSIONS: We identified two novel SLC12A3 genetic variant [c.2159G>T (p.Gly720Val) and c.2675T>C (p.Leu892Pro)] in two Chinese GS pedigrees. The discovery of new mutations has enriched the spectrum of SLC12A3 genotypes.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome de Gitelman , Doença de Graves , Pessoa de Meia-Idade , Humanos , Feminino , Síndrome de Gitelman/genética , Síndrome de Gitelman/diagnóstico , Linhagem , Membro 3 da Família 12 de Carreador de Soluto/genética , Mutação
5.
BMC Nephrol ; 23(1): 267, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883046

RESUMO

BACKGROUND: Gitelman syndrome (GS) is a rare autosomal recessive inherited salt-losing tubulopathy (SLT). Here, we report, for the first time, a case of GS overlapping nephrotic syndrome (NS) related to PLA2R-associated membranous nephropathy (MN). CASE PRESENTATION: We described a male patient had a 4-year history of recurrent fatigue. Serum biochemistry revealed hypokalemia with renal potassium wasting, hypomagnesemia, metabolic alkalosis, hyperreninemia, hypocalciuria, as well as nephrotic-range proteinuria, hypoalbuminemia, and elevated serum anti-phospholipase A2 receptor (PLA2R) antibody. Gene sequencing identified compound heterozygous mutations in SLC12A3 [c.536T > A(p.V179D) and c.1456G > A(p.D486N)]. The unusual association of SLTs and nephrotic-range glomerular proteinuria prompted us to perform a renal biopsy. Renal biopsy showed idiopathic MN. Due to the potential to activate the sodium-chloride co-transporter (NCC) and cause hyperkalemia, tacrolimus was selected to treat NS. Following treatment with potassium chloride, magnesium oxide, low-dose glucocorticoid combined with tacrolimus, the fatigue significantly improved, and concurrently hypokalemia, hypomagnesemia were corrected and NS was remitted. CONCLUSIONS: Renal biopsy should be warranted for GS patients with moderate to nephrotic-range proteinuria. Tacrolimus was preferred to the management of GS patients with NS.


Assuntos
Síndrome de Gitelman , Glomerulonefrite Membranosa , Hipopotassemia , Fadiga , Síndrome de Gitelman/complicações , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Glomerulonefrite Membranosa/complicações , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/genética , Humanos , Hipopotassemia/complicações , Magnésio , Masculino , Potássio , Proteinúria/complicações , Membro 3 da Família 12 de Carreador de Soluto/genética , Tacrolimo/uso terapêutico
6.
Genes (Basel) ; 13(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35627249

RESUMO

Familial PHEOs (pheochromocytomas) are inherited as an autosomal dominant trait, and inherited PHEOs can be one clinical phenotype of clinical syndromes, such as multiple endocrine neoplasia type 2A (MEN2A). In recent years, there has been a lot of controversy about the factors affecting the penetrance of PHEOs in MEN2A, of which the effects of RET (rearranged during transfection) proto-oncogene mutations are the primary concern. In this report, we performed genetic screening of patients in one family presenting with PHEOs and found they carried a RET c.1901G>A mutation. They were ultimately diagnosed with familial MEN2A. We found that MEN2A patients with the RET c.1901G>A mutation tended to have bilateral PHEOs that appeared earlier than medullary thyroid carcinoma. Genetic analysis showed that the patients also carried novel SLC12A3 (solute carrier family 12 member 3) variants, which are highly associated with Giteman syndrome. The results of protein structure prediction models suggest this SLC12A3 mutant has altered both the protein structure and the interaction with surrounding amino acids. Further studies of the phenotypes and related mechanisms of the gene mutations are required to guide individual assessment and treatment.


Assuntos
Neoplasia Endócrina Múltipla Tipo 2a , Neoplasias Pancreáticas , Feocromocitoma , Proteínas Proto-Oncogênicas c-ret , Membro 3 da Família 12 de Carreador de Soluto , Humanos , Neoplasia Endócrina Múltipla Tipo 2a/genética , Mutação , Neoplasias Pancreáticas/genética , Feocromocitoma/genética , Proteínas Proto-Oncogênicas c-ret/genética , Membro 3 da Família 12 de Carreador de Soluto/genética
7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(3): 401-406, 2022 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545335

RESUMO

Two patients with Gitelman syndrome were admitted to the Department of Endocrinology, Third Xiangya Hospital of Central South University. The genomic DNA from the patients' peripheral blood was extracted and the whole-exome sequencing was performed to detect the possible mutations. The function of the mutation sites was analyzed by bioinformatics software. Through whole-exome sequencing and Sanger sequencing, we have found that 2 patients with Gitelman syndrome carried compound heterozygous mutations of SLC12A3 gene, which were c.486_490delTACGGinsA, p.R943W, p.D486N, and p.R928C. Among them, c.486_490delTACGGinsA insertion deletion mutation causes frame shift and protein truncation. The p.R943W, p.D486N, and p.R928C of SLC12A3 gene were predicted to be pathogenic mutations by SIFT, PolyPhen2, and Mutation Taster. These 4 mutations were all reported, but p.R943W was first reported in Chinese population. Gitelman syndrome is rare in clinic and the rate of missed diagnosis is high. Early genetic analysis in patients with Gitelman syndrome is helpful to determine the etiology and guide the treatment.


Assuntos
Síndrome de Gitelman , Testes Genéticos , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Humanos , Mutação , Linhagem , Membro 3 da Família 12 de Carreador de Soluto/genética , Sequenciamento do Exoma
8.
PLoS Med ; 19(2): e1003897, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113855

RESUMO

BACKGROUND: Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS: We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), ß-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS: In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.


Assuntos
Anti-Hipertensivos/efeitos adversos , Análise da Randomização Mendeliana/métodos , Neoplasias/genética , Peptidil Dipeptidase A/genética , Receptores Adrenérgicos beta 1/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Membro 3 da Família 12 de Carreador de Soluto/genética
9.
Scand J Clin Lab Invest ; 81(8): 629-633, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657521

RESUMO

Mutations in the SLC12A3 gene have been reported to cause Gitelman syndrome (GS). This study aimed to investigate the genetic mutations and clinical features of patients with GS. Four pedigrees (4 GS patients and 14 family members) were enrolled. The symptoms, laboratory results, management, and genotypes were analyzed. Genomic DNA was screened for gene variations using Sanger sequencing. DNA sequences were compared with reference sequences. The effects of the mutations were predicted using prediction tools (Mutation Taster, PolyPhen-2, SIFT, and PROVEAN). Genetic analysis revealed six genetic variants of SLC12A3, including three novel heterozygous mutations (c.2T > C, c.1609C > T, c.3055G > A) and three previously characterized mutations (c.1456G > A, c.2542G > A, c.1077C > G). These mutations were predicted to exert a damaging effect based on predictive in silico tools. GS patients had low blood pressure and low levels of serum K+, serum Mg2+, and 24-h urinary Ca2+ but high levels of 24-h urinary K+. These clinical manifestations and genotypes were consistent with the diagnostic criteria of GS. The study described the phenotypes and genotypes of 4 pedigrees involving GS patients, demonstrating the importance of SLC12A3 gene screening for GS.


Assuntos
Síndrome de Gitelman , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Humanos , Mutação , Linhagem , Fenótipo , Membro 3 da Família 12 de Carreador de Soluto/genética
10.
Pflugers Arch ; 473(1): 79-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200256

RESUMO

The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Túbulos Renais Distais/citologia , Magnésio/metabolismo , Camundongos , Potássio/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Proteínas Supressoras de Tumor/genética
11.
Am J Physiol Renal Physiol ; 319(6): F1043-F1053, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135481

RESUMO

The genetic disease Gitelman syndrome, knockout mice, and pharmacological blockade with thiazide diuretics have revealed that reduced activity of the NaCl cotransporter (NCC) promotes renal Mg2+ wasting. NCC is expressed along the distal convoluted tubule (DCT), and its activity determines Mg2+ entry into DCT cells through transient receptor potential channel subfamily M member 6 (TRPM6). Several other genetic forms of hypomagnesemia lower the drive for Mg2+ entry by inhibiting activity of basolateral Na+-K+-ATPase, and reduced NCC activity may do the same. Lower intracellular Mg2+ may promote further Mg2+ loss by directly decreasing activity of Na+-K+-ATPase. Lower intracellular Mg2+ may also lower Na+-K+-ATPase indirectly by downregulating NCC. Lower NCC activity also induces atrophy of DCT cells, decreasing the available number of TRPM6 channels. Conversely, a mouse model with increased NCC activity was recently shown to display normal Mg2+ handling. Moreover, recent studies have identified calcineurin and uromodulin (UMOD) as regulators of both NCC and Mg2+ handling by the DCT. Calcineurin inhibitors paradoxically cause hypomagnesemia in a state of NCC activation, but this may be related to direct effects on TRPM6 gene expression. In Umod-/- mice, the cause of hypomagnesemia may be partly due to both decreased NCC expression and lower TRPM6 expression on the cell surface. This mini-review discusses these new findings and the possible role of altered Na+ flux through NCC and ultimately Na+-K+-ATPase in Mg2+ reabsorption by the DCT.


Assuntos
Síndrome de Gitelman/metabolismo , Túbulos Renais Distais/metabolismo , Magnésio/metabolismo , Eliminação Renal , Reabsorção Renal , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Calcineurina/metabolismo , Síndrome de Gitelman/genética , Síndrome de Gitelman/fisiopatologia , Humanos , Túbulos Renais Distais/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Canais de Cátion TRPM/metabolismo , Uromodulina/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R320-R328, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913688

RESUMO

The modifications of the hemodynamic system and hydromineral metabolism are physiological features characterizing a normal gestation. Thus, the ability to expand plasma volume without increasing the level of blood pressure is necessary for the correct perfusion of the placenta. The kidney is essential in this adaptation by reabsorbing avidly sodium and fluid. In this study, we observed that the H,K-ATPase type 2 (HKA2), an ion pump expressed in kidney and colon and already involved in the control of the K+ balance during gestation, is also required for the correct plasma volume expansion and to maintain normal blood pressure. Indeed, compared with WT pregnant mice that exhibit a 1.6-fold increase of their plasma volume, pregnant HKA2-null mice (HKA2KO) only modestly expand their extracellular volume (×1.2). The renal expression of the epithelial Na channel (ENaC) α- and γ-subunits and that of the pendrin are stimulated in gravid WT mice, whereas the Na/Cl- cotransporter (NCC) expression is downregulated. These modifications are all blunted in HKA2KO mice. This impeded renal adaptation to gestation is accompanied by the development of hypotension in the pregnant HKA2KO mice. Altogether, our results showed that the absence of the HKA2 during gestation leads to an "underfilled" situation and has established this transporter as a key player of the renal control of salt and potassium metabolism during gestation.


Assuntos
Pressão Sanguínea , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Rim/enzimologia , Volume Plasmático , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporina 2/metabolismo , Colo/enzimologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
13.
Am J Physiol Renal Physiol ; 313(2): F495-F504, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515174

RESUMO

The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na+) and, indirectly, serum potassium (K+) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 (22Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K+, the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion.


Assuntos
Polaridade Celular , Cloretos/metabolismo , Células Epiteliais/metabolismo , Mutação , Sódio/metabolismo , Animais , Técnicas de Cultura de Células , Cães , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Genótipo , Ensaios de Triagem em Larga Escala , Cinética , Células Madin Darby de Rim Canino , Fenótipo , Fosforilação , Potássio/metabolismo , Processamento de Proteína Pós-Traducional , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transfecção
14.
Am J Physiol Renal Physiol ; 312(6): F1044-F1055, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274925

RESUMO

Deficiency of cyclooxygenase-2 (COX-2) activity in the early postnatal period causes impairment of kidney development leading to kidney insufficiency. We hypothesize that impaired NaCl reabsorption during the first days of life is a substantial cause for nephrogenic defects observed in COX-2-/- mice and that salt supplementation corrects these defects. Daily injections of NaCl (0.8 mg·g-1·day-1) for the first 10 days after birth ameliorated impaired kidney development in COX-2-/- pups resulting in an increase in glomerular size and fewer immature superficial glomeruli. However, impaired renal subcortical growth was not corrected. Increasing renal tubular flow by volume load or injections of KCl did not relieve the renal histomorphological damage. Administration of torsemide and spironolactone also affected nephrogenesis resulting in diminished glomeruli and cortical thinning. Treatment of COX-2-/- pups with NaCl/DOCA caused a stronger mitigation of glomerular size and induced a slight but significant growth of cortical tissue mass. After birth, renal mRNA expression of NHE3, NKCC2, ROMK, NCCT, ENaC, and Na+/K+-ATPase increased relative to postnatal day 2 in wild-type mice. However, in COX-2-/- mice, a significantly lower expression was observed for NCCT, whereas NaCl/DOCA treatment significantly increased NHE3 and ROMK expression. Long-term effects of postnatal NaCl/DOCA injections indicate improved kidney function with normalization of pathologically enhanced creatinine and urea plasma levels; also, albumin excretion was observed. In summary, we present evidence that salt supplementation during the COX-2-dependent time frame of nephrogenesis partly reverses renal morphological defects in COX-2-/- mice and improves kidney function.


Assuntos
Ciclo-Oxigenase 2/deficiência , Rim/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Anormalidades Urogenitais/tratamento farmacológico , Animais , Animais Recém-Nascidos , Ciclo-Oxigenase 2/genética , Acetato de Desoxicorticosterona/administração & dosagem , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Rim/anormalidades , Rim/enzimologia , Rim/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Morfogênese , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Espironolactona/administração & dosagem , Sulfonamidas/administração & dosagem , Torasemida , Anormalidades Urogenitais/enzimologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/fisiopatologia
15.
Nat Commun ; 8: 14037, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067240

RESUMO

Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl- channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Hipertensão/genética , Túbulos Renais Distais/imunologia , Sódio/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Canais de Cloreto/genética , Canais de Cloreto/imunologia , Cloretos/imunologia , Cloretos/metabolismo , Técnicas de Cocultura , Ácido Desoxicólico/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/patologia , Transporte de Íons , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/imunologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sódio/imunologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/imunologia , Quinases da Família src/genética , Quinases da Família src/imunologia
16.
Am J Physiol Renal Physiol ; 312(3): F489-F501, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003191

RESUMO

Calcineurin dephosphorylates nuclear factor of activated T cells transcription factors, thereby facilitating T cell-mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation but may cause side effects, including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA). An involvement of major hormones like angiotensin II or arginine vasopressin (AVP) has been proposed. To resolve this issue, the effects of CsA treatment in normal Wistar rats, AVP-deficient Brattleboro rats, and cultured renal epithelial cells endogenously expressing either NKCC2 or NCC were studied. Acute administration of CsA to Wistar rats rapidly augmented phosphorylation levels of NKCC2, NCC, and their activating kinases suggesting intraepithelial activating effects. Chronic CsA administration caused salt retention and hypertension, along with stimulation of renin and suppression of renal cyclooxygenase 2, pointing to a contribution of endocrine and paracrine mechanisms at long term. In Brattleboro rats, CsA induced activation of NCC, but not NKCC2, and parallel effects were obtained in cultured cells in the absence of AVP. Stimulation of cultured thick ascending limb cells with AVP agonist restored their responsiveness to CsA. Our results suggest that the direct epithelial action of calcineurin inhibition is sufficient for the activation of NCC, whereas its effect on NKCC2 is more complex and requires concomitant stimulation by AVP.


Assuntos
Inibidores de Calcineurina/toxicidade , Ciclosporina/toxicidade , Células Epiteliais/efeitos dos fármacos , Imunossupressores/toxicidade , Túbulos Renais Distais/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/agonistas , Animais , Arginina Vasopressina/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/fisiopatologia , Alça do Néfron/metabolismo , Alça do Néfron/fisiopatologia , Masculino , Ratos Brattleboro , Ratos Wistar , Renina/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/agonistas , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
17.
Curr Opin Nephrol Hypertens ; 26(1): 9-13, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798456

RESUMO

PURPOSE OF REVIEW: Bartter and Gitelman syndromes are typical normotensive salt losing hypokalaemic tubulopathies. Their pathogenesis was gradually deciphered in the past 5 decades, first by typical salt balance studies and histopathology, followed by genetic characterization and discovery of the affected different ion channels. Although the different genotypic subtypes were originally thought to show a similar phenotype, important clinical and biochemical differences can now be found. New findings on the regulation of these channels, as well as the recent discovery of newly affected genes, merit an update on this topic. RECENT FINDINGS: Na-K-2CL cotransporter and NaCl cotransporter, the two main luminal channels in the thick ascending limb and distal convoluted tubule were found to be regulated by Ste 20-related proline alanine-rich kinase and oxidative stress response kinase. Knockout mice to these channels express a Bartter-like phenotype. MAGE-D2 is new gene found to cause severe polyhydramnios and transient postnatal Bartter-like syndrome. Variants in the different channels causing Bartter syndromes/Gitelman syndromes may also confer susceptibility for hypertension or protect against it. SUMMARY: It remains to be determined if polymorphism or epigenetic changes in these genes and proteins may affect salt handling, explaining, apart from Bartter syndromes and Gitelman syndromes, also hypertension or stroke tendency, or both.


Assuntos
Síndrome de Bartter/genética , Síndrome de Gitelman/genética , Hipertensão/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Neoplasias/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Túbulos Renais Distais/metabolismo , Fenótipo , Poli-Hidrâmnios/genética , Gravidez , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-27040185

RESUMO

In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranchs, however, the ionoregulatory function of the gills is still incompletely understood. Although two types of ionocytes, Na(+)/K(+)-ATPase (NKA)-rich (type-A) cell and vacuolar-type H(+)-ATPase (V-ATPase)-rich (type-B) cell, have been found in elasmobranch fishes, these cells were considered to function primarily in acid-base regulation. In the present study, we examined ion-transporting proteins expressed in ionocytes of Japanese-banded houndshark, Triakis scyllium, reared in full-strength seawater (SW) and transferred to diluted (30%) SW. In addition to the upregulation of NKA and Na(+)/H(+) exchanger type 3 (NHE3) mRNAs in the type-A ionocytes, we found that Na(+), Cl(-) cotransporter (NCC, Slc12a3) is expressed in a subpopulation of the type-B ionocytes, and that the expression level of NCC mRNA was enhanced in houndsharks transferred to a low-salinity environment. These results suggest that elasmobranch gill ionocytes contribute to NaCl uptake in addition to the already described function of acid-base regulation, and that NCC is most probably one of the key molecules for hyper-osmoregulatory function of elasmobranch gills. The existence of two types of ionocytes (NHE3- and NCC-expressing cells) that are responsible for NaCl absorption seems to be a common feature in both teleosts and elasmobranchs for adaptation to a low salinity environment. A possible driving mechanism for NCC in type-B ionocytes is discussed.


Assuntos
Elasmobrânquios/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Brânquias/citologia , Aclimatação , Animais , Clonagem Molecular , Elasmobrânquios/metabolismo , Regulação da Expressão Gênica , Brânquias/metabolismo , Osmorregulação , Filogenia , Salinidade , Água do Mar , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
PLoS One ; 11(1): e0147831, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824839

RESUMO

The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H(+)-ATPases and alternative functions in H(+)-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H(+)-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H(+)-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H(+)-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H(+)-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H(+)-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H(+)-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H(+)-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H(+)-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H(+)-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H(+)-ATPase activity in intercalated cells.


Assuntos
Córtex Renal/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Renina/farmacologia , Cloreto de Amônio/farmacologia , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cães , Regulação da Expressão Gênica , Córtex Renal/citologia , Córtex Renal/metabolismo , Medula Renal/citologia , Medula Renal/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Células Madin Darby de Rim Canino , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais , Bicarbonato de Sódio/farmacologia , Cloreto de Sódio/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transportadores de Sulfato
20.
Braz. j. med. biol. res ; 49(11): e5261, 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-797894

RESUMO

Loss of function of mutated solute carrier family 12 member 3 (SLC12A3) gene is the most frequent etiology for Gitelman syndrome (GS), which is mainly manifested by hypokalemia, hypomagnesemia and hypocalciuria. We report the genetic characteristics of one suspicious Chinese GS pedigree by gene sequencing. Complete sequencing analysis of the SLC12A3 gene revealed that both the proband and his elder sister had a novel homozygous SLC12A3 mutation: c.2099T>C and p.Leu700Pro. Moreover, the SLC12A3 genes of his mother and daughter encoded the same mutated heterozygote. It was noted that in this pedigree, only the proband complained about recurrent episodes of bilateral lower limb weakness over 8 years, while his elder sister, mother and daughter did not present symptoms. The inconsistent clinical features of this pedigree implied that besides diverse phenotypes possibly originated from the same genotype, gender difference may also dominate the variant GS phenotypes. Further genetic and proteomic research are needed to investigate the precise mechanisms of GS, including the study of specific ethnicities.


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Síndrome de Gitelman/genética , Homozigoto , Mutação/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Povo Asiático , Síndrome de Gitelman/diagnóstico , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA