Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
BMC Biol ; 20(1): 228, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209095

RESUMO

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismo
2.
Eur J Pharmacol ; 933: 175276, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130639

RESUMO

Psoriasis is characterized by hyperproliferative keratinocytes, dilated capillaries and leukocyte infiltration. 2-Methoxyestradiol (2-ME) has shown significant inhibition on proliferation, angiogenesis and inflammation. To evaluate the anti-psoriatic potential of 2-ME, psoriasis-like dermatitis was induced by topical application of imiquimod (IMQ) on the dorsal skin of C57BL/6 mice for seven consecutive days, followed by treatment of vehicle or 2-ME ointment from Day 4 on. The psoriasis area and severity index (PASI) was assessed daily. On Day 8, skin histology and spleen index were assessed. The effects of 2-ME on the proliferation, apoptosis, cell cycle, vascular endothelial growth factor A (VEGFA), and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways of HaCaT cells stimulated by interleukin-17 (IL-17A) were detected, together with its effect on the proliferation, tube formation and VEGF receptor expression of human umbilical vein endothelial cells (HUVECs). We found that topical 2-ME treatment significantly improved IMQ-induced psoriasis-like dermatitis and decreased the PASI scores, the activation of STAT3 in the skin (P < 0.05), and the spleen index in mice (P < 0.01). In vitro, 2-ME inhibited the proliferation of HaCaT cells by inducing apoptosis and G2/M phase arrest (P < 0.01). Moreover, 2-ME suppressed IL-17A-induced VEGFA (2.5 µM: P < 0.05; 5 µM: P < 0.01) and phosphorylation of STAT3 by blocking p-JAK1 in HaCaT cells and prevented tube formation (P < 0.01) and proliferation by targeting VEGF receptors 1 (VEGFR1) and 2 (VEGFR2) in HUVECs. We conclude that 2-ME alleviated psoriasis in vivo and in vitro by inhibiting JAK1/STAT3 pathway and was a promising therapeutic agent for psoriasis.


Assuntos
Dermatite , Psoríase , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Animais , Proliferação de Células , Dermatite/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Janus Quinase 1 , Queratinócitos , Mercaptoetanol/metabolismo , Mercaptoetanol/farmacologia , Mercaptoetanol/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pomadas/efeitos adversos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Fator de Transcrição STAT3 , Pele , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Pharmacol Rep ; 74(5): 1041-1053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989399

RESUMO

BACKGROUND: Kidney ischemia reperfusion injury (IRI) is characterized by tubular cell death. DNA double-strand breaks is one of the major sources of tubular cell death induced by IRI. 2-Mercaptoethanol (2-ME) is protective against DNA double-strand breaks derived from calf thymus and bovine embryo. Here, we sought to determine whether treatment with 2-ME attenuated DNA double-strand breaks, resulting in reduced kidney dysfunction and structural damage in IRI. METHODS: Kidney IRI or sham-operation in mice was carried out. The mice were treated with 2-ME, Ras-selective lethal 3, or vehicle. Kidney function, tubular injury, DNA damage, antioxidant enzyme expression, and DNA damage response (DDR) kinases activation were assessed. RESULTS: Treatment with 2-ME significantly attenuated kidney dysfunction, tubular injury, and DNA double-strand breaks after IRI. Among DDR kinases, IRI induced phosphorylation of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR), but IRI reduced phosphorylation of other DDR kinases including ataxia telangiectasia and Rad3 related, checkpoint kinase 1 (Chk1), Chk2, and Chinese hamster cells 1 (XRCC1). Treatment with 2-ME enhanced phosphorylation of ATM and ATM-mediated effector kinases in IRI-subjected kidneys, suggesting that 2-ME activates ATM-mediated DDR signaling pathway. Furthermore, 2-ME dramatically upregulated glutathione peroxidase 4 (GPX4) in IRI-subjected kidneys. Inhibition of GPX4 augmented adverse IRI consequences including kidney dysfunction, tubular injury, DNA double-strand breaks, and inactivation of ATM-mediated DDR signaling pathway after IRI in 2-ME-treated kidneys. CONCLUSIONS: We have demonstrated that exogenous 2-ME protects against DNA double-strand breaks after kidney IRI through GPX4 upregulation and ATM activation.


Assuntos
Ataxia Telangiectasia , Traumatismo por Reperfusão , Bovinos , Animais , Camundongos , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Mercaptoetanol/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Ataxia Telangiectasia/metabolismo , Antioxidantes/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Dano ao DNA , Fosforilação , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Rim/metabolismo , DNA/metabolismo , Isquemia/metabolismo , Proteínas de Ciclo Celular/genética
4.
Toxicol Ind Health ; 38(10): 655-664, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838060

RESUMO

The developing brain is susceptible to the neurotoxic effects of lead. Exposure to lead has main effects on the cholinergic system and causes reduction of cholinergic neuron function during brain development. Disruption of the cholinergic system by chemicals, which play important roles during brain development, causes of neurodevelopmental toxicity. Differentiation of stem cells to neural cells is recently considered a promising tool for neurodevelopmental toxicity studies. This study evaluated the toxicity of lead acetate exposure during the differentiation of bone marrow-derived mesenchyme stem cells (bone marrow stem cells, BMSCs) to CCholinergic neurons. Following institutional animal care review board approval, BMSCs were obtained from adult rats. The differentiating protocol included two stages that were pre-induction with ß-mercaptoethanol (BME) for 24 h and differentiation to cholinergic neurons with nerve growth factor (NGF) over 5 days. The cells were exposed to different lead acetate concentrations (0.1-100 µm) during three stages, including undifferentiated, pre-induction, and neuronal differentiation stages; cell viability was measured by MTT assay. Lead exposure (0.01-100 µg/ml) had no cytotoxic effect on BMSCs but could significantly reduce cell viability at 50 and 100 µm concentrations during pre-induction and neuronal differentiation stages. MAP2 and choline acetyltransferase (ChAT) protein expression were investigated by immunocytochemistry. Although cells treated with 100 µm lead concentration expressed MAP2 protein in the differentiation stages, they had no neuronal cell morphology. The ChAT expression was negative in cells treated with lead. The present study showed that differentiated neuronal BMSCs are sensitive to lead toxicity during differentiation, and it is suggested that these cells be used to study neurodevelopmental toxicity.


Assuntos
Intoxicação do Sistema Nervoso por Chumbo , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Células Cultivadas , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Chumbo/metabolismo , Intoxicação do Sistema Nervoso por Chumbo/metabolismo , Mercaptoetanol/metabolismo , Mercaptoetanol/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Compostos Organometálicos , Ratos
5.
Braz. j. microbiol ; 47(1): 143-149, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-775118

RESUMO

Abstract Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.


Assuntos
Aspergillus/enzimologia , Lipase/metabolismo , Cátions Bivalentes/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/isolamento & purificação , Peso Molecular , Mercaptoetanol/metabolismo , Metais/metabolismo , Temperatura
6.
Mol Med Rep ; 12(2): 2140-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25892608

RESUMO

Porcine embryonic stem cells (pESCs) have great potential for application in translational biomedical research, including xenotransplantation and disease models. Obtaining high-quality blastocysts is the most important factor in the isolation and colonization of primary ESCs and the establishment of ESC lines. In pigs, in vitro-derived blastocysts have a limited cell number compared to in vivo-derived blastocysts and show an indefinite inner cell mass, which may result in failure to establish pESC lines. In the present study, the effects of resveratrol (RES), granulocyte-macrophage colony stimulating factor (GM-CSF) and ß-mercaptoethanol (ß-ME) on the quality of blastocysts and the efficiency of colony derivation were investigated for the establishment of ESCs. A novel culturing system was developed in which 2 µM RES was added to the oocyte in vitro maturation (IVM) medium, and 10 ng/ml pGM-CSF and 10 µM ß-ME were added to embryo in vitro culture (IVC) medium. This novel system showed significantly more parthenogenetic activation (PA) blastocysts (54.5 ± 1.8% vs. 43.4 ± 1.2%; P<0.05) and in vitro fertilization (IVF) blastocysts (36.9 ± 3.3% vs. 26.2 ± 2.9%; P<0.06) at day seven as compared with that in the control system. The PA and IVF blastocysts from the novel system showed a significantly greater hatching rate (P<0.05) and greater cell numbers (55.1 ± 2.0 vs. 45.6 ± 2.0; P<0.05 and 78.9 ± 6.8 vs. 58.5 ± 7.2; P<0.06, for PA and IVF, respectively) at day seven compared to that in the control system. After seeding on feeder cells, the PA blastocysts produced by the novel system showed a significantly increased rate of attachment (28.8 ± 3.9% vs. 17.2 ± 2.4%; P<0.062). Finally, two putative pESC lines from PA embryos produced by the novel system and one by the control system were established. In conclusion, the novel system improved blastocyst quality and increased the derivation efficiency of putative pESC lines from porcine PA and IVF embryos produced in vitro.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Suínos/embriologia , Animais , Blastocisto/metabolismo , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Masculino , Mercaptoetanol/metabolismo , Camundongos , Partenogênese , Resveratrol , Estilbenos/metabolismo
7.
Biosci Rep ; 32(6): 539-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22804629

RESUMO

Cu,Zn SOD1 (superoxide dismutase 1) is implicated in FALS (familial amyotrophic lateral sclerosis) through the accumulation of misfolded proteins that are toxic to neuronal cells. Loop VI (residues 102-115) of the protein is at the dimer interface and could play a critical role in stability. The free cysteine residue, Cys111 in the loop, is readily oxidized and alkylated. We have found that modification of this Cys111 with 2-ME (2-mercaptoethanol; 2-ME-SOD1) stabilizes the protein and the mechanism may provide insights into destabilization and the formation of aggregated proteins. Here, we determined the crystal structure of 2-ME-SOD1 and find that the 2-ME moieties in both subunits interact asymmetrically at the dimer interface and that there is an asymmetric configuration of segment Gly108 to Cys111 in loop VI. One loop VI of the dimer forms a 310-helix (Gly108 to His110) within a unique ß-bridge stabilized by a hydrogen bond between Ser105-NH and His110-CO, while the other forms a ß-turn without the H-bond. The H-bond (H-type) and H-bond free (F-type) configurations are also seen in some wild-type and mutant human SOD1s in the Protein Data Bank suggesting that they are interconvertible and an intrinsic property of SOD1s. The two structures serve as a basis for classification of these proteins and hopefully a guide to their stability and role in pathophysiology.


Assuntos
Cisteína/química , Mercaptoetanol/química , Superóxido Dismutase/química , Alquilação , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Cristalografia por Raios X , Cisteína/metabolismo , Humanos , Ligação de Hidrogênio , Mercaptoetanol/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
8.
Biochemistry ; 51(29): 5851-9, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22746182

RESUMO

Insulin-like growth factor 1 (IGF-1) is a 70-residue hormone containing three intramolecular disulfide bridges. IGF-1 and other growth factors are oxidatively folded in the endoplasmic reticulum and act primarily in the blood, under relatively oxidative conditions. It is known that IGF-1 exists in various intracellular and extracellular compartments in the oxidized form; however, the reduction potential of IGF-1 and the ability of fully reduced IGF-1, which contains six cysteine residues, to bind transition metal ions are not known. In this work, we determine that the redox potential of human IGF-1 is equal to -332 mV and the reduced form of hIGF-1 can bind cooperatively four Cu(+) ions, most probably into a tetracopper-hexathiolate cluster. The Cu(+) binding affinity of hIGF-1 is, however, approximately 3 times lower than that for the copper chaperones; thus, we can conclude that fully reduced hIGF-1 cannot compete with known Cu(+)-binding proteins.


Assuntos
Cobre/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Ditiotreitol/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/química , Mercaptoetanol/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica
9.
Chem Res Toxicol ; 24(2): 217-28, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21250671

RESUMO

Some biologically active chemicals are relatively stable in the extracellular environment but, upon entering the cell, undergo biotransformation into reactive intermediates that covalently modify DNA. The diverse chemical reactions involved in the bioactivation of DNA-damaging agents are both fundamentally interesting and of practical importance in medicinal chemistry and toxicology. The work described here examines the bioactivation of α-haloacrolyl-containing molecules. The α-haloacrolyl moiety is found in a variety of cytotoxic natural products including clionastatin B, bromovulone III, discorahabdins A, B, and C, and trichodenone C, in mutagens such as 2-bromoacrolein and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and in the anticancer drug candidates brostallicin and PNU-151807. Using α-bromo-2-cyclopentenone (1) as a model compound, the activation of α-haloacrolyl-containing molecules by biological thiols was explored. The results indicate that both low molecular weight and peptide thiols readily undergo conjugate addition to 1. The resulting products are consistent with a mechanism in which initial addition of thiols to 1 is followed by intramolecular displacement of bromide to yield a DNA-alkylating episulfonium ion intermediate. The reaction of thiol-activated 1 with DNA produces labile lesions at deoxyguanosine residues. The sequence specificity and salt dependence of this process is consistent with involvement of an episulfonium ion intermediate. The alkylated guanine residue resulting from the thiol-triggered reaction of 1 with duplex DNA was characterized using mass spectrometry. The results provide new insight regarding the mechanisms by which thiols can bioactivate small molecules and offer a more complete understanding of the molecular mechanisms underlying the biological activity of cytotoxic, mutagenic, and medicinal compounds containing the α-haloacrolyl group.


Assuntos
Alquilantes/toxicidade , Compostos de Bromo/toxicidade , Ciclopentanos/toxicidade , Dano ao DNA , Compostos de Sulfidrila/metabolismo , Alquilação , Linhagem Celular , Cisteína/metabolismo , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mercaptoetanol/metabolismo , Peptídeos/metabolismo
10.
Mol Biochem Parasitol ; 175(1): 83-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20888371

RESUMO

Leishmania major aquaglyceroporin LmAQP1 allows adventitious passage of antimonite, an activated form of the drug Pentostam, which is used as the first line treatment for leishmaniasis. The extracellular C-loop of an aquaglyceroporin confers substrate specificity. Alteration of Glu125 to serine in the Plasmodium falciparum aquaglyceroporin PfAQP has been shown to selectively affect water but not glycerol permeability. The C-loop of LmAQP1 is twelve residues longer than PfAQP, and Ala163 is at an equivalent position as Glu125 of PfAQP. The role of Ala163 in LmAQP1 solute permeability was investigated. Alteration of Ala163 to serine or threonine did not significantly affect conduction of solutes. However, alteration to aspartate, glutamate, and glutamine blocked passage of water, glycerol, and other organic solutes. While LmAQP1 is a mercurial insensitive water channel, mutation of the adjacent threonine (Thr164) to cysteine led to inhibition of water passage by Hg(2+). This inhibition could be reversed upon addition of ß-mercaptoethanol. These data suggest that, unlike Glu125 (PfAQP), Ala163 is not involved in stabilization of the C-loop and selective solute permeability. Ala163 is located near the pore mouth of the channel, and replacement of Ala163 by bulkier residue sterically hinders the passage of solutes. Alteration of Ala163 to serine or threonine affected metalloid uptake in the order, wild-type>A163S>A163T. Metalloid conduction was near completely blocked when Ala163 was mutagenized to aspartate, glutamate, or glutamine. Mutations such as A163S and A163T that reduced the permeability to antimonite, without a significant loss in water or solute conductivity raises the possibility that, subtle changes in the side chain of the amino acid residue in position 163 of LmAQP1 may play a role in drug resistance.


Assuntos
Alanina/genética , Antimônio/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Resistência a Medicamentos , Leishmania major/genética , Leishmania major/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Inibidores Enzimáticos/metabolismo , Glicerol/metabolismo , Mercaptoetanol/metabolismo , Mercúrio/metabolismo , Metaloides/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Compostos Orgânicos/metabolismo , Estrutura Terciária de Proteína , Substâncias Redutoras/metabolismo , Água/metabolismo
11.
Toxicol Sci ; 110(2): 270-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474219

RESUMO

Several mammalian enzymes catalyzing the phosphorolytic-arsenolytic cleavage of their substrates (thus yielding arsenylated metabolites) have been shown to facilitate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in presence of their substrate and a thiol. These include purine nucleoside phosphorylase (PNP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glycogen phosphorylase-a (GPa). In this work, we tested further enzymes, the bacterial phosphotransacetylases (PTAs) and PNP, for AsV reduction. The PTAs, which arsenolytically cleave acetyl-CoA producing acetyl-arsenate, were compared with GAPDH, which can also form acetyl-arsenate by arsenolysis of its nonphysiological substrate, acetyl-phosphate. As these enzymes also mediated AsV reduction, we can assert that facilitation of thiol-dependent AsV reduction may be a general property of enzymes that catalyze phosphorolytic-arsenolytic reactions. Because with all such enzymes arsenolysis is obligatory for AsV reduction, we analyzed the relationship between these two processes in presence of various thiol compounds, using PNP. Although no thiol influenced the rate of PNP-catalyzed arsenolysis, all enhanced the PNP-mediated AsV reduction, albeit differentially. Furthermore, the relative capacity of thiols to support AsV reduction mediated by PNP, GPa, PTA, and GAPDH apparently depended on the type of arsenylated metabolites (i.e., arsenate ester or anhydride) produced by these enzymes. Importantly, AsV reduction by both acetyl-arsenate-producing enzymes (i.e., PTA and GAPDH) exhibited striking similarities in responsiveness to various thiols, thus highlighting the role of arsenylated metabolite formation. This observation, together with the finding that PNP-mediated AsV reduction lags behind the PNP-catalyzed arsenolysis lead to the hypothesis that arsenolytic enzymes promote reduction of AsV by forming arsenylated metabolites which are more reducible to AsIII by thiols than inorganic AsV. This hypothesis is evaluated in the adjoining paper.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicogênio Fosforilase/metabolismo , Fosfato Acetiltransferase/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Compostos de Sódio/metabolismo , Compostos de Sulfidrila/metabolismo , Acetilcoenzima A/metabolismo , Animais , Bovinos , Ditiotreitol/metabolismo , Glutationa/metabolismo , Inosina/metabolismo , Cinética , Mercaptoetanol/metabolismo , Modelos Químicos , Oxirredução , Coelhos , Succímero/metabolismo , Unitiol/metabolismo
12.
Toxicol Sci ; 110(2): 282-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19478237

RESUMO

Enzymes catalyzing the phosphorolytic cleavage of their substrates can reduce arsenate (AsV) to the more toxic arsenite (AsIII) via the arsenolytic substrate cleavage in presence of a reductant, as glutathione or dithiotreitol (DTT). We have shown this for purine nucleoside phosphorylase (PNP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen phosphorylase-a (GPa), and phosphotransacetylase (PTA). Using a multidisciplinary approach, we explored the mechanism whereby these enzymes mediate AsV reduction. It is known that PNP cleaves inosine with AsV into hypoxanthine and ribose-1-arsenate. In presence of inosine, AsV and DTT, PNP mediates AsIII formation. In this study, we incubated PNP first with inosine and AsV, allowing the arsenolytic reaction to run, then blocked this reaction with the PNP inhibitor BCX-1777, added DTT and continued the incubation. Despite inhibition of PNP, large amount of AsIII was formed in these incubations, indicating that PNP does not reduce AsV directly but forms a product (i.e., ribose-1-arsenate) that is reduced to AsIII by DTT. Similar studies with the other arsenolytic enzymes (GPa, GAPDH, and PTA) yielded similar results. Various thiols that differentially supported AsV reduction when present during PNP-catalyzed arsenolysis (DTT approximately dimercaptopropane-1-sulfonic acid > mercaptoethanol > DMSA > GSH) similarly supported AsV reduction when added only after a transient PNP-catalyzed arsenolysis, which preformed ribose-1-arsenate. Experiments with progressively delayed addition of DTT after BCX-1777 indicated that ribose-1-arsenate is short-lived with a half-life of 4 min. In conclusion, phosphorolytic enzymes, such as PNP, GAPDH, GPa, and PTA, promote thiol-dependent AsV reduction because they convert AsV into arsenylated products reducible by thiols more readily than AsV. In support of this view, reactivity studies using conceptual density functional theory reactivity descriptors (local softness, nucleofugality) indicate that reduction by thiols of the arsenylated metabolites is favored over AsV.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicogênio Fosforilase/metabolismo , Fosfato Acetiltransferase/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Compostos de Sódio/metabolismo , Compostos de Sulfidrila/metabolismo , Acetilcoenzima A/metabolismo , Animais , Bovinos , Ditiotreitol/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Meia-Vida , Inosina/metabolismo , Cinética , Mercaptoetanol/metabolismo , Modelos Químicos , Oxirredução , Nucleosídeos de Purina/farmacologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/farmacologia , Coelhos , Succímero/metabolismo , Unitiol/metabolismo
13.
J Biol Chem ; 283(52): 36176-84, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18974051

RESUMO

Xanthine oxidoreductase (XOR) generates proinflammatory oxidants and secondary nitrating species, with inhibition of XOR proving beneficial in a variety of disorders. Electrophilic nitrated fatty acid derivatives, such as nitro-oleic acid (OA-NO2), display anti-inflammatory effects with pleiotropic properties. Nitro-oleic acid inhibits XOR activity in a concentration-dependent manner with an IC50 of 0.6 microM, limiting both purine oxidation and formation of superoxide (O2.). Enzyme inhibition by OA-NO2 is not reversed by thiol reagents, including glutathione, beta-mercaptoethanol, and dithiothreitol. Structure-function studies indicate that the carboxylic acid moiety, nitration at the 9 or 10 olefinic carbon, and unsaturation is required for XOR inhibition. Enzyme turnover and competitive reactivation studies reveal inhibition of electron transfer reactions at the molybdenum cofactor accounts for OA-NO2-induced inhibition. Importantly, OA-NO2 more potently inhibits cell-associated XOR-dependent O2. production than does allopurinol. Combined, these data establish a novel role for OA-NO2 in the inhibition of XOR-derived oxidant formation.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácidos Oleicos/metabolismo , Xantina Desidrogenase/metabolismo , Animais , Aorta/citologia , Bovinos , Ditiotreitol/metabolismo , Células Endoteliais/citologia , Ácidos Graxos/química , Glutationa/metabolismo , Concentração Inibidora 50 , Mercaptoetanol/metabolismo , Oxigênio/química , Transdução de Sinais , Superóxidos/metabolismo
14.
Biochemistry ; 47(2): 640-50, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18088104

RESUMO

Recently, we have shown (Goch, G., Vdovenko, S., Kozlowska, H., and Bierzynski, A. (2005) FEBS J. 272, 2557-2565) that the chemical modification of Cys 85 residue of S100A1 protein by disulfide bond formation with small thiols such as glutathione, cysteine, or beta-mercaptoethanol (betaME) leads to a dramatic increase of the protein affinity for calcium. Therefore, the biological function of S100A1 as a calcium signal transmitter is probably regulated by the redox potential within the cell. Systematic, structural studies of various mixed disulfides of S100A1 in the apo and holo states are necessary to elucidate the mechanism of this phenomenon. Using NMR methods we have determined the structure of apo-S100A1-betaME and, on the basis of 15N nuclear magnetic relaxation data, we have characterized the structural dynamics of both: modified and unmodified molecules of apo-S100A1. The following effects of betaME modification have been observed: (1) Helices IV and IV' of two protein subunits are elongated by five residues (85-89). (2) Conformation of the calcium binding N-terminal loops is dramatically changed, and structural flexibility of the N-loops as well as C-loops markedly increases. (3) The angle between helices I and IV increases by approximately 20 degrees and between helices IV and IV' decreases by approximately 35 degrees . All these observations lead to the conclusion that betaME modification of apo-S100A1 makes its structure more similar to that of holo-S100A1, so that it becomes much better adjusted for calcium coordination.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Mercaptoetanol/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Amidas , Sequência de Aminoácidos , Animais , Bovinos , Difusão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Termodinâmica
15.
Biochem Biophys Res Commun ; 361(3): 611-4, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17669361

RESUMO

The transcription factors Oct4 and Nanog are essential for the maintenance of an undifferentiated and pluripotent state in early embryonic cells, embryonic stem cells and embryonal carcinoma cells in humans and mice. These factors are co-localized to promoters of more than 300 genes, and synergistically regulate their activities. Currently, the molecular interaction between these two factors has not been well-characterized. During attempts to co-immunoprecipitate Oct4 and Nanog we found that cross-linking with dithiobis[succinimidylpropionate] was necessary to maintain their interaction. This result was supported by gel filtration analysis. Surprisingly, formaldehyde, a cross-linker commonly used during chromatin immunoprecipitation of Oct4 and Nanog, did not preserve the complex. Our findings demonstrate the effectiveness of using DSP to mitigate the instability of the interaction between these two particular proteins. Additionally, this solution may potentially allow us to identify novel members of the Oct4-Nanog complex, leading to better understanding of the regulatory mechanisms behind pluripotency.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Homeodomínio/isolamento & purificação , Imunoprecipitação , Fator 3 de Transcrição de Octâmero/isolamento & purificação , Succinimidas/farmacologia , Animais , Carcinoma Embrionário/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Cromatografia em Gel , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Mercaptoetanol/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Dodecilsulfato de Sódio/metabolismo , Neoplasias Testiculares/metabolismo
16.
J Biomol Screen ; 11(7): 844-53, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16943391

RESUMO

Kinases and ATPases produce adenosine diphosphate (ADP) as a common product, so an assay that detects ADP would provide a universal means for activity-based screening of enzymes in these families. Because it is known that most kinases accept ATPbetaS (sulfur on the beta-phosphorous) as a substrate in place of adenosine triphosphate (ATP), the authors have developed a continuous assay using this substrate, with detection of the ADPbetaS product using dithio reagents. Such an assay is possible because dithio groups react selectively with ADPbetaS and not with ATPbetaS. Thiol detection was done using both Ellman's reagent (DTNB) and a recently developed fluorescent dithio reagent, DSSA. Therefore, the assay can be run in both absorbance and fluorescence detection modes. The assay was used to perform steady-state kinetic analyses of both hexokinase and myosin ATPase. It was also used to demonstrate the diastereoselectivity of hexokinase (R) and myosin ATPase (S) for the isomers of ATPbetaS, consistent with previous results. When run in fluorescence mode using a plate reader, an average Z' value of 0.54 was obtained, suggesting the assay is appropriate for high-throughput screening.


Assuntos
Trifosfato de Adenosina/metabolismo , Hexoquinase/metabolismo , Miosinas/análise , Compostos de Sulfidrila/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/análise , Animais , Ácido Ditionitrobenzoico/química , Hexoquinase/análise , Concentração Inibidora 50 , Cinética , Mercaptoetanol/metabolismo , Coelhos , Reprodutibilidade dos Testes , Estereoisomerismo , Compostos de Sulfidrila/química , Suínos
17.
J Biomol Screen ; 11(6): 694-703, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16844966

RESUMO

When studying cysteinyl proteases in general and caspases in particular, it is generally accepted that a reaction buffer must contain a reducing agent to prevent essential cysteinyl groups from spontaneous oxidation. Dithiothreitol (DTT) and beta-mercaptoethanol (beta-MCE) are 2 of the most broadly used reducing agents. While screening a library of small molecules against caspase-3, the authors have found that the nature of the reducing agent used, DTT or beta-MCE, dramatically affects screening results and leads to identification of nonoverlapping hits. Screening in DTT-containing buffer revealed few novel classes of small molecules that selectively and reversibly inhibit caspase-3 but failed to identify isatin sulfonamides recently found to be potent and selective caspase-3 inhibitors (false negatives). On the other hand, screening in the presence of beta-MCE failed to identify a series of hit compounds, 1,3-dioxo-2,3-dichloro-1H-pyrrolo[3,4-c]quinolines, discovered with DTT, whereas isatin sulphonamides in these conditions exhibited strong caspase-3 inhibition. In this work, the authors show that thiol-containing reducing agents can affect catalytic activity of caspase-3 and modify its thermostability in a redox-potential-independent manner. The authors speculate that the differential structural modifications of caspase-3 seen with different reducing agents represent structurally different caspase-3 conformations and are responsible for its differential sensitivity to small molecules of different chemotypes. Hence, selection of the reducing agent may dramatically affect the quality of high-throughput screening campaigns.


Assuntos
Inibidores de Caspase , Inibidores de Cisteína Proteinase/análise , Caspase 3 , Inibidores de Cisteína Proteinase/farmacologia , Ditiotreitol/metabolismo , Mercaptoetanol/metabolismo , Relação Estrutura-Atividade
18.
J Biol Inorg Chem ; 10(2): 199-207, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15747133

RESUMO

Human porphobilinogen synthase [EC.4.2.1.24] is a homo-octamer enzyme. In the active center of each subunit, four cysteines are titrated with 5,5'-dithiobis(2-nitrobenzoic acid). Cys(122), Cys(124) and Cys(132) are placed near two catalytic sites, Lys(199) and Lys(252), and coordinate a zinc ion, referred to as "a proximal zinc ion", and Cys(223) is placed at the orifice of the catalytic cavity and coordinates a zinc ion, referred to as "a distal zinc ion", with His(131) . When the wild-type enzymes C122A (Cys(122)-->Ala), C124A (Cys(124)-->Ala), C132A (Cys(132)-->Ala) and C223A (Cys(223)-->Ala) were oxidized by hydrogen peroxide, the levels of activity were decreased. Two cysteines were titrated with 5,5'-dithiobis(2-nitrobenzoic acid) in the wild-type enzyme, while on the other hand, one cysteine was titrated in the mutant enzymes. When wild-type and mutant enzymes were reduced by 2-mercaptoethanol, the levels of activity were increased: four and three cysteines were titrated, respectively, suggesting that a disulfide bond was formed among Cys(122), Cys(124) and Cys(132) under oxidizing conditions. We analyzed the enzyme-bound zinc ion of these enzymes using inductively coupled plasma mass spectrometry with gel-filtration chromatography. The results for C223A showed that the number of proximal zinc ions correlated to the level of enzymatic activity. Furthermore, zinc-ion-free 2-mercaptoethanol increased the activity of the wild-type enzyme without a change in the total number of zinc ions, but C223A was not activated. These findings suggest that a distal zinc ion moved to the proximal binding site when a disulfide bond among Cys(122), Cys(124) and Cys(132) was reduced by reductants. Thus, in the catalytic functioning of the enzyme, the distal zinc ion does not directly contribute but serves rather as a reserve as the next proximal one that catalyzes the enzyme reaction. A redox change of the three cysteines in the active center accommodates the catch and release of the reserve distal zinc ion placed at the orifice of the catalytic cavity.


Assuntos
Cisteína/química , Mercaptoetanol/metabolismo , Sintase do Porfobilinogênio/química , Sintase do Porfobilinogênio/metabolismo , Zinco/química , Sítios de Ligação , Ativação Enzimática , Expressão Gênica , Humanos , Cinética , Mutagênese Sítio-Dirigida , Mutação , Sintase do Porfobilinogênio/genética , Ligação Proteica
19.
Mol Reprod Dev ; 65(4): 435-45, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12840817

RESUMO

Experiments were conducted to determine the effects of meiosis-inhibiting-agents and gonadotropins on nuclear maturation of canine oocytes. The culture medium was TCM199 + 10 ng/ml epidermal growth factor supplemented with 25 microM beta-mercaptoethanol, 0.25 mM pyruvate, and 1.0 mM L-glutamine (Basal TCM). Initially, oocytes were cultured in Basal TCM alone or in Basal TCM + dibutylryl cyclic adenosine monophosphate (0.5, 1, 5, or 10 mM dbcAMP) for 24 hr. Dibutylryl cAMP inhibited resumption of meiosis in a dose-dependent manner; 60% of oocytes remained at the germinal vesicle (GV) stage after being cultured for 24 hr in 5 mM dbcAMP. The meiosis-inhibitory effect of dbcAMP appeared to be reversible, as the oocytes resumed meiosis and completed nuclear maturation after being cultured for an additional 48 hr in its absence. Oocytes were then cultured in Basal TCM alone or in Basal TCM + roscovitine (12.5, 25, or 50 microM) for 24 hr. Although approximately 60% of oocytes cultured in 25 microM roscovitine remained at the GV stage, this percentage was not significantly different from the 48% that also remained at the GV stage when cultured in its absence. Oocytes were cultured in Basal TCM + 25 microM roscovitine for 17 hr, exposed briefly to equine chorionic gonadotropin (eCG), and then cultured in Basal TCM for 48 hr. Short exposure of oocytes to eCG was beneficial, as it significantly increased the proportion of oocytes developing beyond germinal vesicle breakdown (P < 0.05) with approximately 20-30% of these were metaphase I (MI) oocytes. Study of the kinetics of nuclear maturation demonstrated that large numbers of oocytes remained at MI even after being cultured for 52 hr following brief exposure to eCG. This study showed that in vitro maturation of canine oocytes can be somewhat improved by short exposure of oocytes to eCG. However, further studies are still required to derive effective methods to mature canine oocytes in vitro.


Assuntos
Bucladesina/farmacologia , Gonadotropina Coriônica/farmacologia , Gonadotropinas Equinas/farmacologia , Meiose/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Purinas/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/fisiologia , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Feminino , Hormônio do Crescimento/metabolismo , Hormônio Luteinizante/metabolismo , Meiose/fisiologia , Mercaptoetanol/metabolismo , Miose/metabolismo , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Roscovitina
20.
Yeast ; 20(5): 417-26, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12673625

RESUMO

In this work we have studied the disulphide-bound group of cell wall mannoproteins of Yarrowia lipolytica and Candida albicans. In the case of Y. lipolytica, SDS-PAGE analysis of the beta-mercaptoethanol-extracted material from the purified cell walls of the yeast form, showed the presence of a main polypeptide of 45 kDa and some minor bands in the 100-200 kDa range. This pattern of bands is similar to that obtained in identical extracts in Saccharomyces cerevisiae (Moukadiri et al., 1999), and besides, all these bands cross-react with an antibody raised against beta-mercaptoethanol-extracted material from the purified cell walls of S. cerevisiae, suggesting that the 45 kDa band could be the homologue of Pir4 of S. cerevisiae in Y. lipolytica. To confirm this possibility, the amino-terminal sequences of two internal regions of the 45 kDa protein were determined, and degenerate oligonucleotides were used to clone the gene. The gene isolated in this way codes a 286 amino acid polypeptide that shows homology with the Pir family of proteins of S. cerevisiae (Russo et al., 1992; Toh-e et al., 1993), accordingly we have named this gene YlPIR1. Disruption of YlPIR1 led to a slight increase in the resistance of the cells to calcofluor white, Congo red and zymolyase, but did not cause changes in cell morphology, growth rate or morphological transition.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Yarrowia/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Western Blotting , Candida albicans/genética , Candida albicans/metabolismo , Parede Celular/metabolismo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Dissulfetos/metabolismo , Proteínas Fúngicas/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mercaptoetanol/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Alinhamento de Sequência , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA