Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.046
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654018

RESUMO

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Transcriptoma , Animais , Regeneração Óssea/fisiologia , Poliésteres , Crânio/cirurgia , Células-Tronco Mesenquimais , Mesoderma/citologia , Diferenciação Celular , Engenharia Tecidual/métodos , Suturas Cranianas , Materiais Biocompatíveis
2.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646822

RESUMO

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Assuntos
Divisão Celular , Movimento Celular , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Animais , Movimento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Divisão Celular/genética , Mesoderma/metabolismo , Mesoderma/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética
3.
FASEB J ; 38(9): e23632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686936

RESUMO

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Assuntos
Ductos Paramesonéfricos , Oviductos , Análise de Célula Única , Transcriptoma , Útero , Animais , Feminino , Camundongos , Útero/metabolismo , Útero/citologia , Ductos Paramesonéfricos/metabolismo , Oviductos/metabolismo , Oviductos/citologia , Perfilação da Expressão Gênica , Animais Recém-Nascidos , Diferenciação Celular , Mesoderma/metabolismo , Mesoderma/citologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no Desenvolvimento
4.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451105

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais , Mesoderma/citologia , Células Cultivadas
5.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38421638

RESUMO

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Assuntos
Diferenciação Celular , Mesoderma , Transdução de Sinais , Proteína Smad4 , Humanos , Mesoderma/metabolismo , Mesoderma/citologia , Diferenciação Celular/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Linhagem Celular , Histonas/metabolismo
6.
Nature ; 626(7998): 367-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092041

RESUMO

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Hematopoese , Saco Vitelino , Humanos , Implantação do Embrião , Endoderma/citologia , Endoderma/embriologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Saco Vitelino/citologia , Saco Vitelino/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Células-Tronco Pluripotentes Induzidas/citologia , Âmnio/citologia , Âmnio/embriologia , Corpos Embrioides/citologia , Linhagem da Célula , Biologia do Desenvolvimento/métodos , Biologia do Desenvolvimento/tendências
7.
Biochimie ; 207: 33-48, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36427681

RESUMO

Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.


Assuntos
Vesículas Extracelulares , Mesoderma , Regeneração , Medicina Regenerativa , Células-Tronco , Vesículas Extracelulares/classificação , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Medicina Regenerativa/normas , Medicina Regenerativa/tendências , Mesoderma/citologia , Células-Tronco/citologia , Humanos , Animais , Biotecnologia/métodos , Biotecnologia/normas , Biotecnologia/tendências
8.
Dev Cell ; 57(3): 398-414.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134346

RESUMO

The postnatal development and maturation of the liver, the major metabolic organ, are inadequately understood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity in the developing liver and the progressive construction of the zonated metabolic functions from pericentral to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macrophages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all hepatic cell types and is instrumental for further dissection of liver development, metabolism, and disease.


Assuntos
Perfilação da Expressão Gênica , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Análise de Célula Única , Animais , Animais Recém-Nascidos , Comunicação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese , Hepatócitos/citologia , Hepatócitos/metabolismo , Macrófagos/metabolismo , Mesoderma/citologia , RNA-Seq , Fatores de Tempo , Fatores de Transcrição/metabolismo
9.
Dev Biol ; 483: 76-88, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34973174

RESUMO

The chick limb bud has plasticity to reconstruct a normal skeletal pattern after a part of mesenchymal mass is excised to make a hole in its early stage of development. To understand the details of hole closure and re-establishment of normal limb axes to reconstruct a normal limb skeleton, we focused on cellular and molecular changes during hole repair and limb restoration. We excised a cube-shaped mass of mesenchymal cells from the medial region of chick hindlimb bud (stage 23) and observed the following morphogenesis. The hole had closed by 15 â€‹h after excision, followed by restoration of the limb bud morphology, and the cartilage pattern was largely restored by 48 â€‹h. Lineage analysis of the mesenchymal cells showed that cells at the anterior and posterior margins of the hole were adjoined at the hole closure site, whereas cells at the proximal and distal margins were not. To investigate cell polarity during hole repair, we analyzed intracellular positioning of the Golgi apparatus relative to the nuclei. We found that the Golgi apparatus tended to be directed toward the hole among cells at the anterior and posterior margins but not among cells at identical positions in normal limb buds or cells at the proximal and distal hole margins. In the manipulated limb buds, the frequency of cell proliferation was maintained compared with the control side. Tbx3 expression, which was usually restricted to anterior and posterior margins of the limb bud, was temporarily expanded medially and then reverted to a normal pattern as limb reconstruction proceeded, with Tbx3 negative cells reappearing in the medial regions of the limb buds. Thus, mesenchymal hole closure and limb reconstruction are mainly mediated by cells at the anterior and posterior hole margins. These results suggest that adjustment of cellular properties along the anteroposterior axis is crucial to restore limb damage and reconstruct normal skeletal patterns.


Assuntos
Padronização Corporal/fisiologia , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Esqueleto/embriologia , Animais , Proteínas Aviárias/metabolismo , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Extremidades/embriologia , Complexo de Golgi/metabolismo , Membro Posterior/embriologia , Transdução de Sinais/fisiologia , Esqueleto/citologia , Esqueleto/metabolismo , Proteínas com Domínio T/metabolismo
10.
Nat Cell Biol ; 24(1): 10-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969962

RESUMO

Loss of alveolar type 2 cells (AEC2s) and the ectopic appearance of basal cells in the alveoli characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into basal cells in response to fibrotic signalling in the lung mesenchyme, in vitro and in vivo. Single-cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures revealed the emergence of pathologic fibroblasts and basaloid cells previously described in IPF. Transforming growth factor-ß1 and anti-bone morphogenic protein signalling in the organoids promoted transdifferentiation. Trajectory and histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated that hAEC2s transdifferentiate into basal cells through alveolar-basal intermediates that accumulate in proximity to pathologic CTHRC1hi/TGFB1hi fibroblasts. Our study indicates that hAEC2 loss and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally connected through an hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.


Assuntos
Transdiferenciação Celular/fisiologia , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/patologia , Queratina-5/metabolismo , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Epidérmicas/citologia , Fibroblastos/citologia , Humanos , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Análise de Célula Única , Fator de Crescimento Transformador beta1/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829987

RESUMO

The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.


Assuntos
Actomiosina/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Linhagem da Célula/genética , Citoesqueleto/genética , Enfisema/genética , Enfisema/patologia , Gases/metabolismo , Humanos , Pulmão/patologia , Mesoderma/citologia , Mesoderma/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Tretinoína/metabolismo
12.
Sci Rep ; 11(1): 21584, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732748

RESUMO

The unfolded protein response (UPR) is a direct consequence of cellular endoplasmic reticulum (ER) stress and a key disease driving mechanism in IPF. The resolution of the UPR is directed by PPP1R15A (GADD34) and leads to the restoration of normal ribosomal activity. While the role of PPP1R15A has been explored in lung epithelial cells, the role of this UPR resolving factor has yet to be explored in lung mesenchymal cells. The objective of the current study was to determine the expression and role of PPP1R15A in IPF fibroblasts and in a bleomycin-induced lung fibrosis model. A survey of IPF lung tissue revealed that PPP1R15A expression was markedly reduced. Targeting PPP1R15A in primary fibroblasts modulated TGF-ß-induced fibroblast to myofibroblast differentiation and exacerbated pulmonary fibrosis in bleomycin-challenged mice. Interestingly, the loss of PPP1R15A appeared to promote lung fibroblast senescence. Taken together, our findings demonstrate the major role of PPP1R15A in the regulation of lung mesenchymal cells, and regulation of PPP1R15A may represent a novel therapeutic strategy in IPF.


Assuntos
Senescência Celular , Fibrose/metabolismo , Proteína Fosfatase 1/genética , Resposta a Proteínas não Dobradas , Idoso , Animais , Bleomicina , Diferenciação Celular , Proliferação de Células , Estresse do Retículo Endoplasmático , Feminino , Fibroblastos/metabolismo , Genótipo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Indóis/farmacologia , Pulmão/metabolismo , Masculino , Mesoderma/citologia , Camundongos , Pessoa de Meia-Idade , Morfolinas/farmacologia , Proteína Fosfatase 1/fisiologia , Análise de Sequência de RNA , Fator de Crescimento Transformador beta/metabolismo
13.
Mol Biol Cell ; 32(22): ar40, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613789

RESUMO

Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.


Assuntos
Aurora Quinase B/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição/metabolismo , Células A549 , Animais , Aurora Quinase B/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Endoderma/citologia , Endoderma/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Mesoderma/citologia , Camundongos , Células-Tronco Embrionárias Murinas/fisiologia , Mutação , Fosforilação , Fatores de Transcrição/genética
14.
Sci Rep ; 11(1): 20111, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635691

RESUMO

The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.


Assuntos
Osso e Ossos/citologia , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Larva/citologia , Estrelas-do-Mar/crescimento & desenvolvimento , Animais , Osso e Ossos/metabolismo , Embrião não Mamífero/metabolismo , Evolução Molecular , Larva/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Estrelas-do-Mar/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716243

RESUMO

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Néfrons/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Diferenciação Celular , Autorrenovação Celular , Imunoprecipitação da Cromatina , Técnicas de Introdução de Genes , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexos Multiproteicos , Proteínas Nucleares/genética , Mapeamento de Interação de Proteínas , Proteínas Tirosina Fosfatases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcriptoma
16.
Sci Rep ; 11(1): 18030, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504115

RESUMO

The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.


Assuntos
Pleiotropia Genética , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Cadeias Pesadas de Miosina/genética , Poliplacóforos/genética , Fatores de Transcrição HES-1/genética , Animais , Anelídeos/classificação , Anelídeos/genética , Evolução Biológica , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Morfogênese/genética , Cadeias Pesadas de Miosina/metabolismo , Filogenia , Poliplacóforos/classificação , Poliplacóforos/crescimento & desenvolvimento , Poliplacóforos/metabolismo , Fatores de Transcrição HES-1/metabolismo , Urocordados/classificação , Urocordados/genética
18.
Nat Commun ; 12(1): 5528, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545085

RESUMO

Inferring cellular trajectories using a variety of omic data is a critical task in single-cell data science. However, accurate prediction of cell fates, and thereby biologically meaningful discovery, is challenged by the sheer size of single-cell data, the diversity of omic data types, and the complexity of their topologies. We present VIA, a scalable trajectory inference algorithm that overcomes these limitations by using lazy-teleporting random walks to accurately reconstruct complex cellular trajectories beyond tree-like pathways (e.g., cyclic or disconnected structures). We show that VIA robustly and efficiently unravels the fine-grained sub-trajectories in a 1.3-million-cell transcriptomic mouse atlas without losing the global connectivity at such a high cell count. We further apply VIA to discovering elusive lineages and less populous cell fates missed by other methods across a variety of data types, including single-cell proteomic, epigenomic, multi-omics datasets, and a new in-house single-cell morphological dataset.


Assuntos
Algoritmos , Genômica , Análise de Célula Única , Animais , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Forma Celular , Hematopoese , Humanos , Ilhotas Pancreáticas/citologia , Proteínas com Homeodomínio LIM/metabolismo , Mesoderma/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Organogênese , Fatores de Transcrição/metabolismo
19.
Cell Rep ; 36(7): 109542, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407400

RESUMO

Teriparatide is the most widely prescribed bone anabolic drug in the world, but its cellular targets remain incompletely defined. The Gli1+ metaphyseal mesenchymal progenitors (MMPs) are a main source for osteoblasts in postnatal growing mice, but their potential response to teriparatide is unknown. Here, by lineage tracing, we show that teriparatide stimulates both proliferation and osteoblast differentiation of MMPs. Single-cell RNA sequencing reveals heterogeneity among MMPs, including an unexpected chondrocyte-like osteoprogenitor (COP). COP expresses the highest level of Hedgehog (Hh) target genes and the insulin-like growth factor 1 receptor (Igf1r) among all cell clusters. COP also expresses Pth1r and further upregulates Igf1r upon teriparatide treatment. Inhibition of Hh signaling or deletion of Igf1r from MMPs diminishes the proliferative and osteogenic effects of teriparatide. The study therefore identifies COP as a teriparatide target wherein Hh and insulin-like growth factor (Igf) signaling are critical for the osteoanabolic response in growing mice.


Assuntos
Osso e Ossos/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo , Células-Tronco/metabolismo , Teriparatida/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
20.
Nat Commun ; 12(1): 4797, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376651

RESUMO

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Assuntos
Suturas Cranianas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Osteogênese/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Acrocefalossindactilia/embriologia , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Suturas Cranianas/citologia , Suturas Cranianas/embriologia , Dura-Máter/citologia , Dura-Máter/embriologia , Dura-Máter/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA-Seq/métodos , Crânio/citologia , Crânio/embriologia , Crânio/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA