Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Exp Hematol ; 136: 104284, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032856

RESUMO

Adult blood cells are produced in the bone marrow by hematopoietic stem cells (HSCs), the origin of which can be traced back to fetal developmental stages. Indeed, during mouse development, at days 10-11 of gestation, the aorta-gonad-mesonephros (AGM) region is a primary site of HSC production, with characteristic cell clusters related to stem cell genesis observed in the dorsal aorta. Similar clusters linked with hematopoiesis are also observed in the other sites such as the yolk sac and placenta. In this review, I outline the formation and function of these clusters, focusing on the well-characterized intra-aortic hematopoietic clusters (IAHCs).


Assuntos
Aorta , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Aorta/citologia , Aorta/embriologia , Aorta/metabolismo , Feminino , Gravidez , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo
2.
Ann Vasc Surg ; 108: 65-75, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38942378

RESUMO

BACKGROUND: During human morphogenesis, the definitive kidneys derive from the metanephros during Carnegie Stage 14 to 23. The pronephros and the mesonephros develop previously and successively to finally lead to the formation of the urinary tract. Renal vascularization, first described in 1912 by Félix using a "ladder theory" model, is highly variable and current available morphogenesis descriptions do not explain all reported anatomical variations. The aim of this work was to study the morphogenesis of the human metanephros and its vascularization by three-dimensional reconstructions of human embryos. METHODS: Histological sections of 23 human embryos from the Carnegie Collection and 5 human embryos from the French collection (Carnegie stages 14 to 23) were completely digitalized and reconstructed in three dimensions using specific softwares and then analyzed by descriptive method using manual annotation. RESULTS: In all studied embryos, the mesonephric arteries did not reach the metanephros irrespective to the position of the metanephros during its cranial ascent. Before the end of the cranial metanephros migration (15 embryos), at the level of the aorto-iliac bifurcation, a "primitive" vascularization was shown in 9 of them. The renal artery originated from the primitive iliac arteries for 8 embryos and from the inferior mesenteric artery in one embryo. Further, a capillary cluster emerging from the lateral wall of the aorta and extending toward the metanephros was found in 2 embryos (Carnegie stages 21 and 22). This may correspond to a phenomenon of neoangiogenesis responsible of the definitive renal artery. CONCLUSIONS: The present study reported the morphogenesis of human renal arteries between Carnegie stages 14 and 23 using an original method of tridimensional computerized reconstructions of historical human embryos. Some original findings, in contradiction with the original Felix's description, may explain the most frequently reported anatomical variations.


Assuntos
Imageamento Tridimensional , Mesonefro , Morfogênese , Artéria Renal , Humanos , Artéria Renal/embriologia , Mesonefro/embriologia , Idade Gestacional , Rim/irrigação sanguínea , Rim/embriologia , Modelos Anatômicos
3.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
4.
Blood ; 139(3): 343-356, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34517413

RESUMO

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Assuntos
Embrião de Mamíferos/embriologia , Hemangioblastos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Análise de Célula Única , Transcriptoma , Peixe-Zebra
5.
Front Immunol ; 12: 790379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899758

RESUMO

The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.


Assuntos
Genômica/tendências , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Análise de Célula Única/tendências , Nicho de Células-Tronco , Animais , Aorta/embriologia , Técnicas de Cultura de Células/tendências , Linhagem da Célula , Células Cultivadas , Difusão de Inovações , Perfilação da Expressão Gênica/tendências , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Humanos , Mesonefro/embriologia , Fenótipo , Proteômica/tendências , Transdução de Sinais , Transcriptoma
6.
Stem Cell Reports ; 11(3): 784-794, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208304

RESUMO

Hematopoietic stem cells (HSCs) develop in the embryonic aorta-gonad-mesonephros (AGM) region and subsequently relocate to fetal liver. Runx1 transcription factor is essential for HSC development, but is largely dispensable for adult HSCs. Here, we studied tamoxifen-inducible Runx1 inactivation in vivo. Induction at pre-liver stages (up to embryonic day 10.5) reduced erythromyeloid progenitor numbers, but surprisingly did not block the appearance of Runx1-null HSCs in liver. By contrast, ex vivo analysis showed an absolute Runx1 dependency of HSC development in the AGM region. We found that, contrary to current beliefs, significant Cre-inducing tamoxifen activity persists in mouse blood for at least 72 hr after injection. This deferred recombination can hit healthy HSCs, which escaped early Runx1 ablation and result in appearance of Runx1-null HSCs in liver. Such extended recombination activity in vivo is a potential source of misinterpretation, particularly in analysis of dynamic developmental processes during embryogenesis.


Assuntos
Aorta/embriologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Mesonefro/embriologia , Animais , Aorta/citologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feminino , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Mesonefro/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Thromb Haemost ; 118(8): 1370-1381, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29991091

RESUMO

The development of new strategies based on cell therapy approaches to correct haemophilia A (HA) requires further insights into new cell populations capable of producing coagulation factor VIII (FVIII) and presenting stable engraftment potential. The major producers of FVIII in the adult are liver sinusoidal endothelial cells (LSECs) and in a lesser degree bone marrow-derived cells, both of which have been shown to ameliorate the bleeding phenotype in adult HA mice after transplantation. We have previously shown that cells from the foetal liver (FL) and the aorta-gonads-mesonephros (AGM) haematopoietic locations possess higher LSEC engraftment potential in newborn mice compared with adult-derived LSECs, constituting likely therapeutic targets for the treatment of HA in neonates. However, less is known about the production of FVIII in embryonic locations. Quantitative polymerase chain reaction and Western blot analysis were performed to assess the relative level of FVIII production in different embryonic tissues and at various developmental stages, identifying the FL and AGM region from day 12 (E12) as prominent sources of FVIII. Furthermore, FL-derived VE-cad+CD45-Lyve1+/- endothelial/endothelial progenitor cells, presenting vascular engraftment potential, produced high levels of F8 ribonucleic acid compared with CD45+ blood progenitors or Dlk1+ hepatoblasts. In addition, we show that the E11 AGM explant cultures expanded cells with LSEC repopulation activity, instrumental to further understand signals for in vitro generation of LSECs. Taking into account the capacity for FVIII expression, culture expansion and newborn engraftment potential, these results support the use of cells with foetal characteristics for correction of FVIII deficiency in young individuals.


Assuntos
Aorta/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator VIII/metabolismo , Gônadas/metabolismo , Hemofilia A/metabolismo , Fígado/metabolismo , Mesonefro/metabolismo , Animais , Aorta/embriologia , Aorta/transplante , Diferenciação Celular , Células Progenitoras Endoteliais/transplante , Fator VIII/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Gônadas/embriologia , Gônadas/transplante , Hemofilia A/genética , Hemofilia A/cirurgia , Fígado/embriologia , Mesonefro/embriologia , Mesonefro/transplante , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Tecidos
8.
Elife ; 72018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905527

RESUMO

The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células de Langerhans/fisiologia , Animais , Animais Geneticamente Modificados , Aorta/citologia , Aorta/embriologia , Aorta/crescimento & desenvolvimento , Gônadas/citologia , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células de Langerhans/citologia , Macrófagos/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/crescimento & desenvolvimento , Camundongos , Microscopia Confocal , Peixe-Zebra
9.
Mol Hum Reprod ; 24(5): 233-243, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528446

RESUMO

STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA: Non-applicable. LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12-13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro. STUDY FUNDING AND COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.


Assuntos
Aorta/citologia , Gametogênese/fisiologia , Células Germinativas/citologia , Gônadas/citologia , Mesonefro/citologia , Aorta/embriologia , Aorta/metabolismo , Biomarcadores/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/metabolismo , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Mesonefro/embriologia , Mesonefro/metabolismo
10.
Development ; 145(2)2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358215

RESUMO

Hematopoietic stem cells (HSCs) develop in discrete anatomical niches, migrating during embryogenesis from the aorta-gonad-mesonephros (AGM) region to the fetal liver, and finally to the bone marrow, where most HSCs reside throughout adult life. These niches provide supportive microenvironments that specify, expand and maintain HSCs. Understanding the constituents and molecular regulation of HSC niches is of considerable importance as it could shed new light on the mechanistic principles of HSC emergence and maintenance, and provide novel strategies for regenerative medicine. However, controversy exists concerning the cellular complexity of the bone marrow niche, and our understanding of the different HSC niches during development remains limited. In this Review, we summarize and discuss what is known about the heterogeneity of the HSC niches at distinct stages of their ontogeny, from the embryo to the adult bone marrow, drawing predominantly on data from mouse studies.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco/fisiologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Aorta/embriologia , Linhagem da Célula , Feminino , Gônadas/embriologia , Neoplasias Hematológicas/patologia , Sistema Hematopoético/embriologia , Humanos , Masculino , Mesonefro/embriologia , Camundongos , Placenta/citologia , Placenta/fisiologia , Gravidez , Células Estromais/citologia , Células Estromais/fisiologia , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/fisiologia
11.
J Exp Med ; 214(12): 3731-3751, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29093060

RESUMO

In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.


Assuntos
Aorta/metabolismo , Diferenciação Celular , Gônadas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Animais , Aorta/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Análise por Conglomerados , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Mesoderma/metabolismo , Mesonefro/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas Smad/metabolismo , Nicho de Células-Tronco/genética , Fatores de Tempo
12.
J Exp Med ; 214(11): 3347-3360, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28931624

RESUMO

T lymphocytes are key cellular components of the adaptive immune system and play a central role in cell-mediated immunity in vertebrates. Despite their heterogeneities, it is believed that all different types of T lymphocytes are generated exclusively via the differentiation of hematopoietic stem cells (HSCs). Using temporal-spatial resolved fate-mapping analysis and time-lapse imaging, here we show that the ventral endothelium in the zebrafish aorta-gonad-mesonephros and posterior blood island, the hematopoietic tissues previously known to generate HSCs and erythromyeloid progenitors, respectively, gives rise to a transient wave of T lymphopoiesis independent of HSCs. This HSC-independent T lymphopoiesis occurs early and generates predominantly CD4 Tαß cells in the larval but not juvenile and adult stages, whereas HSC-dependent T lymphopoiesis emerges late and produces various subtypes of T lymphocytes continuously from the larval stage to adulthood. Our study unveils the existence, origin, and ontogeny of HSC-independent T lymphopoiesis in vivo and reveals the complexity of the endothelial-hematopoietic transition of the aorta.


Assuntos
Aorta/citologia , Embrião não Mamífero/citologia , Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Linfopoese , Linfócitos T/citologia , Animais , Animais Geneticamente Modificados , Aorta/embriologia , Aorta/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hibridização In Situ , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Microscopia Confocal , Linfócitos T/metabolismo , Imagem com Lapso de Tempo/métodos , Peixe-Zebra
13.
Nat Biotechnol ; 34(11): 1168-1179, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748754

RESUMO

The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Neovascularização Fisiológica/fisiologia , Aorta/citologia , Aorta/embriologia , Aorta/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Gônadas/citologia , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesonefro/crescimento & desenvolvimento
14.
Blood ; 128(12): 1567-77, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27421959

RESUMO

The first definitive hematopoietic stem cells (dHSCs) in the mouse emerge in the dorsal aorta of the embryonic day (E) 10.5 to 11 aorta-gonad-mesonephros (AGM) region. Notch signaling is essential for early HSC development but is dispensable for the maintenance of adult bone marrow HSCs. How Notch signaling regulates HSC formation in the embryo is poorly understood. We demonstrate here that Notch signaling is active in E10.5 HSC precursors and involves both Notch1 and Notch2 receptors, but is gradually downregulated while they progress toward dHSCs at E11.5. This downregulation is accompanied by gradual functional loss of Notch dependency. Thus, as early as at final steps in the AGM region, HSCs begin acquiring the Notch independency characteristic of adult bone marrow HSCs as part of the maturation program. Our data indicate that fine stage-dependent tuning of Notch signaling may be required for the generation of definitive HSCs from pluripotent cells.


Assuntos
Aorta/embriologia , Embrião de Mamíferos/citologia , Gônadas/embriologia , Células-Tronco Hematopoéticas/citologia , Mesonefro/embriologia , Receptor Notch2/metabolismo , Células Estromais/citologia , Animais , Aorta/metabolismo , Células Cultivadas , Embrião de Mamíferos/metabolismo , Gônadas/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Células Estromais/metabolismo
15.
Nat Commun ; 7: 10784, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952187

RESUMO

During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs.


Assuntos
Aorta/metabolismo , Gônadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Transdução de Sinais , Animais , Aorta/embriologia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Feminino , Gônadas/embriologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Masculino , Mesonefro/embriologia , Camundongos Endogâmicos C57BL
16.
Blood ; 126(26): 2811-20, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26385351

RESUMO

Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Diferenciação Celular/fisiologia , Hemangioblastos/citologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula/fisiologia , Eletroporação , Embrião de Mamíferos , Embrião não Mamífero , Citometria de Fluxo , Imuno-Histoquímica , Mesonefro/embriologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Peixe-Zebra
17.
J Exp Med ; 212(5): 665-80, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25870199

RESUMO

Blood flow promotes emergence of definitive hematopoietic stem cells (HSCs) in the developing embryo, yet the signals generated by hemodynamic forces that influence hematopoietic potential remain poorly defined. Here we show that fluid shear stress endows long-term multilineage engraftment potential upon early hematopoietic tissues at embryonic day 9.5, an embryonic stage not previously described to harbor HSCs. Effects on hematopoiesis are mediated in part by a cascade downstream of wall shear stress that involves calcium efflux and stimulation of the prostaglandin E2 (PGE2)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling axis. Blockade of the PGE2-cAMP-PKA pathway in the aorta-gonad-mesonephros (AGM) abolished enhancement in hematopoietic activity. Furthermore, Ncx1 heartbeat mutants, as well as static cultures of AGM, exhibit lower levels of expression of prostaglandin synthases and reduced phosphorylation of the cAMP response element-binding protein (CREB). Similar to flow-exposed cultures, transient treatment of AGM with the synthetic analogue 16,16-dimethyl-PGE2 stimulates more robust engraftment of adult recipients and greater lymphoid reconstitution. These data provide one mechanism by which biomechanical forces induced by blood flow modulate hematopoietic potential.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Embrião de Mamíferos/embriologia , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Dinoprostona/genética , Embrião de Mamíferos/citologia , Mesonefro/irrigação sanguínea , Mesonefro/citologia , Mesonefro/embriologia , Camundongos , Camundongos Knockout
18.
J Exp Med ; 212(5): 633-48, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25870201

RESUMO

Fluid shear stress promotes the emergence of hematopoietic stem cells (HSCs) in the aorta-gonad-mesonephros (AGM) of the developing mouse embryo. We determined that the AGM is enriched for expression of targets of protein kinase A (PKA)-cAMP response element-binding protein (CREB), a pathway activated by fluid shear stress. By analyzing CREB genomic occupancy from chromatin-immunoprecipitation sequencing (ChIP-seq) data, we identified the bone morphogenetic protein (BMP) pathway as a potential regulator of CREB. By chemical modulation of the PKA-CREB and BMP pathways in isolated AGM VE-cadherin(+) cells from mid-gestation embryos, we demonstrate that PKA-CREB regulates hematopoietic engraftment and clonogenicity of hematopoietic progenitors, and is dependent on secreted BMP ligands through the type I BMP receptor. Finally, we observed blunting of this signaling axis using Ncx1-null embryos, which lack a heartbeat and intravascular flow. Collectively, we have identified a novel PKA-CREB-BMP signaling pathway downstream of shear stress that regulates HSC emergence in the AGM via the endothelial-to-hematopoietic transition.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos/embriologia , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/citologia , Mesonefro/citologia , Mesonefro/embriologia , Camundongos , Camundongos Mutantes , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
19.
J Clin Invest ; 125(5): 2032-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25866967

RESUMO

Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.


Assuntos
Aorta/embriologia , Células Endoteliais/fisiologia , Endotélio Vascular/embriologia , Gônadas/embriologia , Sistema Hematopoético/embriologia , Mesonefro/embriologia , Receptor Notch1/fisiologia , Receptor Notch2/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Antígenos CD/análise , Caderinas/análise , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Endotélio Vascular/citologia , Feminino , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Antígenos Comuns de Leucócito/análise , Masculino , Proteínas de Membrana/fisiologia , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Quimera por Radiação , Transdução de Sinais , Células Estromais/fisiologia
20.
Nat Commun ; 6: 6227, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686881

RESUMO

In vertebrates, haematopoietic stem/progenitor cells (HSPCs) first emerge in the aorta-gonad-mesonephros (AGM) before colonizing transitory and subsequently definitive haematopoietic organs allowing haematopoiesis throughout adult life. Here we identify an unexpected primitive macrophage population accumulated in the dorsal mesenteric mesoderm surrounding the dorsal aorta of the human embryo and study its function in the transparent zebrafish embryo. Our study reveals dynamic interactions occurring between the HSPCs and primitive macrophages in the AGM. Specific chemical and inducible genetic depletion of macrophages or inhibition of matrix metalloproteinases (Mmps) leads to an accumulation of HSPCs in the AGM and a decrease in the colonization of haematopoietic organs. Finally, in vivo zymography demonstrates the function of primitive macrophages in extracellular matrix degradation, which allows HSPC migration through the AGM stroma, their intravasation, leading to the colonization of haematopoietic organs and the establishment of definitive haematopoiesis.


Assuntos
Aorta/embriologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Biologia do Desenvolvimento , Matriz Extracelular/metabolismo , Gônadas/embriologia , Humanos , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mesonefro/embriologia , Microscopia de Fluorescência , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA