Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
2.
Nat Cell Biol ; 24(4): 579-589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414020

RESUMO

Intercellular communication orchestrates a multitude of physiologic and pathologic conditions. Algorithms to infer cell-cell communication and predict downstream signalling and regulatory networks are needed to illuminate mechanisms of stem cell differentiation and tissue development. Here, to fill this gap, we developed and applied CellComm to investigate how the aorta-gonad-mesonephros microenvironment dictates haematopoietic stem and progenitor cell emergence. We identified key microenvironmental signals and transcriptional networks that regulate haematopoietic development, including Stat3, Nr0b2, Ybx1 and App, and confirmed their roles using zebrafish, mouse and human models. Notably, CellComm revealed extensive crosstalk among signalling pathways and convergence on common transcriptional regulators, indicating a resilient developmental programme that ensures dynamic adaptation to changes in the embryonic environment. Our work provides an algorithm and data resource for the scientific community.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Diferenciação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Camundongos , Peixe-Zebra/genética
3.
Blood ; 139(3): 343-356, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34517413

RESUMO

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Assuntos
Embrião de Mamíferos/embriologia , Hemangioblastos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Análise de Célula Única , Transcriptoma , Peixe-Zebra
4.
Biochem Biophys Res Commun ; 558: 161-167, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33930817

RESUMO

Current understanding of hematopoietic stem cell (HSC) development comes from mouse models is considered to be evolutionarily conserved in human. However, the cross-species comparison of the transcriptomic profiles of developmental HSCs at single-cell level is still lacking. Here, we performed integrative transcriptomic analysis of a series of key cell populations during HSC development in human and mouse, including HSC-primed hemogenic endothelial cells and pre-HSCs in mid-gestational aorta-gonad-mesonephros (AGM) region, and mature HSCs in fetal liver and adult bone marrow. We demonstrated the general similarity of transcriptomic characteristics between corresponding cell populations of the two species. Of note, one of the previously transcriptomically defined hematopoietic stem progenitor cell (HSPC) populations with certain arterial characteristics in AGM region of human embryos showed close transcriptomic similarity to pre-HSCs in mouse embryos. On the other hand, the other two HSPC populations in human AGM region displayed molecular similarity with fetal liver HSPCs, suggesting the maturation in AGM before HSCs colonizing the fetal liver in human, which was different to that in mouse. Finally, we re-clustered cells based on the integrated dataset and illustrated the evolutionarily conserved molecular signatures of major cell populations. Our results revealed transcriptomic conservation of critical cell populations and molecular characteristics during HSC development between human and mouse, providing a resource and theoretic basis for future studies on mammalian HSC development and regeneration by using mouse models.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Hematopoese/genética , Humanos , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Família Multigênica , Análise de Célula Única/métodos , Especificidade da Espécie
5.
Pathol Res Pract ; 220: 153388, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647867

RESUMO

Mesonephric remnants are embryonic vestiges of the mesonephric (Wolffian) ducts which regress during normal development. These remnants have been uncommonly reported in the female and male reproductive tract as a spectrum of morphologic lesions that can be misdiagnosed as carcinoma. One case of mesonephric remnant hyperplasia of the jejunal mesentery incidentally found in a 47-year-old man is herein reported. This is the first description of mesonephric hyperplasia arisen in the mesentery. The presence of ducts, tubules, and cysts lined by bland, epithelial, cuboidal cells with scant cytoplasm, and diffuse pseudoinfiltrative growth pattern can raise the possibility of neoplasia. Immunohistochemically, mesonephric epithelia have a characteristic staining. CD10 highlights the apical-luminal aspect of the cells. Besides, intense reactivity is showed for high-molecular-weight cytokeratin (CK), CK7, bcl2, and vimentin. The main differential diagnosis includes mesothelial hyperplasia, epithelial mesothelioma, well-differentiated neuroendocrine tumor, and infiltration due to acinar adenocarcinoma of the prostate. However, a detailed microscopic study with the aid of immunohistochemistry helps separate mesonephric remnants from malignant processes. The mesonephric hyperplasia of the mesentery we have reported adds to the spectrum of mesonephric remnants a new location. Familiarity with this lesion is indispensable to avoid overdiagnosis.


Assuntos
Achados Incidentais , Jejuno/patologia , Mesentério/patologia , Mesonefro/metabolismo , Ductos Mesonéfricos/patologia , Biomarcadores/análise , Biópsia , Diagnóstico Diferencial , Humanos , Hiperplasia , Imuno-Histoquímica , Jejuno/química , Jejuno/cirurgia , Masculino , Mesentério/química , Mesentério/cirurgia , Mesonefro/química , Mesonefro/cirurgia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Ductos Mesonéfricos/química , Ductos Mesonéfricos/cirurgia
6.
IUBMB Life ; 72(1): 45-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634421

RESUMO

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Fator de Transcrição GATA3/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/citologia , Aorta/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Gônadas/citologia , Gônadas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
J Genet Genomics ; 46(10): 489-498, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31776062

RESUMO

The functional heterogeneity of hematopoietic stem cells (HSCs) has been comprehensively investigated by single-cell transplantation assay. However, the heterogeneity regarding their physiological contribution remains an open question, especially for those with life-long hematopoietic fate of rigorous self-renewing and balanced differentiation capacities. In this study, we revealed that Procr expression was detected principally in phenotypical vascular endothelium co-expressing Dll4 and CD44 in the mid-gestation mouse embryos, and could enrich all the HSCs of the embryonic day 11.5 (E11.5) aorta-gonad-mesonephros (AGM) region. We then used a temporally restricted genetic tracing strategy to irreversibly label the Procr-expressing cells at E9.5. Interestingly, most labeled mature HSCs in multiple sites (such as AGM) around E11.5 were functionally categorized as lymphomyeloid-balanced HSCs assessed by direct transplantation. Furthermore, the labeled cells contributed to an average of 7.8% of immunophenotypically defined HSCs in E14.5 fetal liver (FL) and 6.9% of leukocytes in peripheral blood (PB) during one-year follow-up. Surprisingly, in aged mice of 24 months, the embryonically tagged cells displayed constant contribution to leukocytes with no bias to myeloid or lymphoid lineages. Altogether, we demonstrated, for the first time, the existence of a subtype of physiologically long-lived balanced HSCs as hypothesized, whose precise embryonic origin and molecular identity await further characterization.


Assuntos
Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Embrião de Mamíferos , Receptor de Proteína C Endotelial/genética , Feminino , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Masculino , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
8.
Thromb Haemost ; 118(8): 1370-1381, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29991091

RESUMO

The development of new strategies based on cell therapy approaches to correct haemophilia A (HA) requires further insights into new cell populations capable of producing coagulation factor VIII (FVIII) and presenting stable engraftment potential. The major producers of FVIII in the adult are liver sinusoidal endothelial cells (LSECs) and in a lesser degree bone marrow-derived cells, both of which have been shown to ameliorate the bleeding phenotype in adult HA mice after transplantation. We have previously shown that cells from the foetal liver (FL) and the aorta-gonads-mesonephros (AGM) haematopoietic locations possess higher LSEC engraftment potential in newborn mice compared with adult-derived LSECs, constituting likely therapeutic targets for the treatment of HA in neonates. However, less is known about the production of FVIII in embryonic locations. Quantitative polymerase chain reaction and Western blot analysis were performed to assess the relative level of FVIII production in different embryonic tissues and at various developmental stages, identifying the FL and AGM region from day 12 (E12) as prominent sources of FVIII. Furthermore, FL-derived VE-cad+CD45-Lyve1+/- endothelial/endothelial progenitor cells, presenting vascular engraftment potential, produced high levels of F8 ribonucleic acid compared with CD45+ blood progenitors or Dlk1+ hepatoblasts. In addition, we show that the E11 AGM explant cultures expanded cells with LSEC repopulation activity, instrumental to further understand signals for in vitro generation of LSECs. Taking into account the capacity for FVIII expression, culture expansion and newborn engraftment potential, these results support the use of cells with foetal characteristics for correction of FVIII deficiency in young individuals.


Assuntos
Aorta/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator VIII/metabolismo , Gônadas/metabolismo , Hemofilia A/metabolismo , Fígado/metabolismo , Mesonefro/metabolismo , Animais , Aorta/embriologia , Aorta/transplante , Diferenciação Celular , Células Progenitoras Endoteliais/transplante , Fator VIII/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Gônadas/embriologia , Gônadas/transplante , Hemofilia A/genética , Hemofilia A/cirurgia , Fígado/embriologia , Mesonefro/embriologia , Mesonefro/transplante , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Tecidos
9.
Mol Hum Reprod ; 24(5): 233-243, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528446

RESUMO

STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA: Non-applicable. LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12-13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro. STUDY FUNDING AND COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.


Assuntos
Aorta/citologia , Gametogênese/fisiologia , Células Germinativas/citologia , Gônadas/citologia , Mesonefro/citologia , Aorta/embriologia , Aorta/metabolismo , Biomarcadores/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/metabolismo , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Mesonefro/embriologia , Mesonefro/metabolismo
10.
Am J Physiol Renal Physiol ; 315(1): F130-F137, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561184

RESUMO

The mesonephros of mammals is a transient renal structure that contributes to various aspects of mammalian fetal development, including the male reproductive system, hematopoietic stem cells, and vascular endothelial cells. The mesonephros develops from the intermediate mesoderm and forms tubules that are segmented in a similar way to the nephrons of the permanent kidney (but lacking loops of Henle). Early studies have suggested that the mesonephros in marsupials and some placental mammals may perform an excretory function, but these studies have not directly shown active transport of organic anions and cations. Excretory function in the rodent mesonephros has not been investigated. Functional characterization of the earliest stages of mammalian renal development is important for our understanding of congenital disease and may help to inform the growing field of renal tissue engineering. Here, we use live uptake and efflux assays in vitro to show that the murine mesonephros is able to transport organic anions and cations through specific transporters from early in its development. Transcript analysis suggests that there are subtle differences between the transporters involved in uptake and efflux by the murine permanent metanephric tubules and by the mesonephric tubules. These data suggest that the mammalian mesonephros can provide an excretory function for the early developing embryo, in addition to the excretory function provided by the placenta.


Assuntos
Mesonefro/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Transporte Biológico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Camundongos , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Gravidez , Técnicas de Cultura de Tecidos
11.
Exp Cell Res ; 365(1): 145-155, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458175

RESUMO

The aorta-gonad-mesonephros region, from which definitive hematopoiesis first arises in midgestation mouse embryos, has intra-aortic hematopoietic clusters (IAHCs) containing hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). We previously reported expression of the transcription factor Sox17 in IAHCs, and overexpression of Sox17 in CD45lowc-KIThigh cells comprising IAHCs maintains the formation of cell clusters and their multipotency in vitro over multiple passages. Here, we demonstrate the importance of NOTCH1 in IAHC formation and maintenance of the HSC/HPC phenotype. We further show that Notch1 expression is positively regulated by SOX17 via direct binding to its gene promoter. SOX17 and NOTCH1 were both found to be expressed in vivo in cells of IAHCs by whole mount immunostaining. We found that cells transduced with the active form of NOTCH1 or its downstream target, Hes1, maintained their multipotent colony-forming capacity in semisolid medium. Moreover, cells stimulated by NOTCH1 ligand, Jagged1, or Delta-like protein 1, had the capacity to form multilineage colonies. Conversely, knockdown of Notch1 and Hes1 led to a reduction of their multipotent colony-forming capacity. These results suggest that the Sox17-Notch1-Hes1 pathway is critical for maintaining the undifferentiated state of IAHCs.


Assuntos
Aorta/metabolismo , Proteínas HMGB/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Feto/metabolismo , Gônadas/metabolismo , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Regiões Promotoras Genéticas/fisiologia
12.
J Exp Med ; 214(12): 3731-3751, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29093060

RESUMO

In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.


Assuntos
Aorta/metabolismo , Diferenciação Celular , Gônadas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Animais , Aorta/embriologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Análise por Conglomerados , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Mesoderma/metabolismo , Mesonefro/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas Smad/metabolismo , Nicho de Células-Tronco/genética , Fatores de Tempo
13.
J Exp Med ; 214(11): 3347-3360, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28931624

RESUMO

T lymphocytes are key cellular components of the adaptive immune system and play a central role in cell-mediated immunity in vertebrates. Despite their heterogeneities, it is believed that all different types of T lymphocytes are generated exclusively via the differentiation of hematopoietic stem cells (HSCs). Using temporal-spatial resolved fate-mapping analysis and time-lapse imaging, here we show that the ventral endothelium in the zebrafish aorta-gonad-mesonephros and posterior blood island, the hematopoietic tissues previously known to generate HSCs and erythromyeloid progenitors, respectively, gives rise to a transient wave of T lymphopoiesis independent of HSCs. This HSC-independent T lymphopoiesis occurs early and generates predominantly CD4 Tαß cells in the larval but not juvenile and adult stages, whereas HSC-dependent T lymphopoiesis emerges late and produces various subtypes of T lymphocytes continuously from the larval stage to adulthood. Our study unveils the existence, origin, and ontogeny of HSC-independent T lymphopoiesis in vivo and reveals the complexity of the endothelial-hematopoietic transition of the aorta.


Assuntos
Aorta/citologia , Embrião não Mamífero/citologia , Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Linfopoese , Linfócitos T/citologia , Animais , Animais Geneticamente Modificados , Aorta/embriologia , Aorta/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hibridização In Situ , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Microscopia Confocal , Linfócitos T/metabolismo , Imagem com Lapso de Tempo/métodos , Peixe-Zebra
14.
Stem Cell Reports ; 8(6): 1549-1562, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479304

RESUMO

During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation.


Assuntos
Aorta/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Genes Reporter , Gônadas/metabolismo , Células-Tronco Hematopoéticas/citologia , Antígenos Comuns de Leucócito/metabolismo , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
15.
Cytokine ; 95: 35-42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28235674

RESUMO

In the midgestation mouse embryo, hematopoietic cell clusters containing hematopoietic stem/progenitor cells arise in the aorta-gonad-mesonephros (AGM) region. We have previously reported that forced expression of the Sox17 transcription factor in CD45lowc-Kithigh AGM cells, which are the hematopoietic cellular component of the cell clusters, and subsequent coculture with OP9 stromal cells in the presence of three cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and thrombopoietin (TPO), led to the formation and the maintenance of cell clusters with cells at an undifferentiated state in vitro. In this study, we investigated the role of each cytokine in the formation of hematopoietic cell clusters. We cultured Sox17-transduced AGM cells with each of the 7 possible combinations of the three cytokines. The size and the number of Sox17-transduced cell clusters in the presence of TPO, either alone or in combination, were comparable to that observed with the complete set of the three cytokines. Expression of TPO receptor, c-Mpl was almost ubiquitously expressed and maintained in Sox17-transduced hematopoietic cell clusters. In addition, the expression level of c-Mpl was highest in the CD45lowc-Kithigh cells among the Sox17-transduced cell clusters. Moreover, c-Mpl protein was highly expressed in the intra-aortic hematopoietic cell clusters in comparison with endothelial cells of dorsal aorta. Finally, stimulation of the endothelial cells prepared from the AGM region by TPO induced the production of hematopoietic cells. These results suggest that TPO contributes to the formation and the maintenance of hematopoietic cell clusters in the AGM region.


Assuntos
Aorta/citologia , Gônadas/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Trombopoetina/fisiologia , Animais , Aorta/embriologia , Aorta/metabolismo , Células Cultivadas , Gônadas/embriologia , Gônadas/metabolismo , Interleucina-3/fisiologia , Mesonefro/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Receptores de Trombopoetina/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Células-Tronco/fisiologia , Transdução Genética
16.
J Exp Med ; 214(2): 529-545, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28031476

RESUMO

The in vitro or ex vivo production of transplantable hematopoietic stem cells (HSCs) holds great promise for the treatment of hematological diseases in the clinic. However, HSCs have not been produced from either embryonic or induced pluripotent stem cells. In this study, we report that 5-hydroxytryptamine (5-HT; also called serotonin) can enhance the generation of hematopoietic stem and progenitor cells (HSPCs) in vitro and is essential for the survival of HSPCs in vivo during embryogenesis. In tryptophan hydroxylase 2-deficient embryos, a decrease in 5-HT synthesized in the aorta-gonad-mesonephros leads to apoptosis of nascent HSPCs. Mechanistically, 5-HT inhibits the AKT-Foxo1 signaling cascade to protect the earliest HSPCs in intraaortic hematopoietic clusters from excessive apoptosis. Collectively, our results reveal an unexpected role of 5-HT in HSPC development and suggest that 5-HT signaling may be a potential therapeutic target for promoting HSPC survival.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Serotonina/fisiologia , Animais , Aorta/metabolismo , Apoptose , Sobrevivência Celular , Proteína Forkhead Box O1/fisiologia , Gônadas/metabolismo , Hematopoese , Sistema de Sinalização das MAP Quinases/fisiologia , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/fisiologia , Triptofano Hidroxilase/fisiologia
17.
Blood ; 128(12): 1567-77, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27421959

RESUMO

The first definitive hematopoietic stem cells (dHSCs) in the mouse emerge in the dorsal aorta of the embryonic day (E) 10.5 to 11 aorta-gonad-mesonephros (AGM) region. Notch signaling is essential for early HSC development but is dispensable for the maintenance of adult bone marrow HSCs. How Notch signaling regulates HSC formation in the embryo is poorly understood. We demonstrate here that Notch signaling is active in E10.5 HSC precursors and involves both Notch1 and Notch2 receptors, but is gradually downregulated while they progress toward dHSCs at E11.5. This downregulation is accompanied by gradual functional loss of Notch dependency. Thus, as early as at final steps in the AGM region, HSCs begin acquiring the Notch independency characteristic of adult bone marrow HSCs as part of the maturation program. Our data indicate that fine stage-dependent tuning of Notch signaling may be required for the generation of definitive HSCs from pluripotent cells.


Assuntos
Aorta/embriologia , Embrião de Mamíferos/citologia , Gônadas/embriologia , Células-Tronco Hematopoéticas/citologia , Mesonefro/embriologia , Receptor Notch2/metabolismo , Células Estromais/citologia , Animais , Aorta/metabolismo , Células Cultivadas , Embrião de Mamíferos/metabolismo , Gônadas/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Células Estromais/metabolismo
18.
Stem Cell Rev Rep ; 12(5): 530-542, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27324145

RESUMO

The aorta-gonad-mesonephros (AGM) region contains intra-aortic clusters (IACs) thought to have acquired hematopoietic stem cell (HSC) potential in vertebrate embryos. To assess extrinsic regulation of IACs in the AGM region, we employed mouse embryos harboring a Sall1-GFP reporter gene, which allows identification of mesonephros cells based on GFP expression. Analysis of AGM region tissue sections confirmed mesonephros GFP expression. Mesonephric cells sorted at E10.5 expressed mRNA encoding Csf1, a hematopoietic cytokine, and corresponding protein, based on real-time PCR and immunocytochemistry, respectively. Further analysis indicated that some IACs express the CSF1 receptor, CSF1R. Expression of Cebpa and Irf8 mRNAs was higher in CSF1R-positive IACs, whereas that of Cebpε and Gfi1 mRNAs was lower relative to CSF1R-negative IACs, suggesting that CSF1/CSF1R signaling functions in IAC myeloid differentiation by modulating expression of these transcription factors. Colony formation assays using CSF1R-positive IACs revealed increased numbers of myeloid colonies in the presence of CSF1. Analysis using an intra-cellular signaling array indicated the greatest fold increase of Cleaved Caspase-3 in AGM cells in the presence of CSF1. Immunohistochemistry revealed that Cleaved Caspase-3 is primarily expressed in IACs in the AGM region, and incubation of IACs with CSF1 up-regulated Cleaved Caspase-3. Overall, our findings suggest that CSF1 secreted from mesonephros accelerates IAC myeloid differentiation in the AGM region, possibly via Caspase-3 cleavage.


Assuntos
Aorta/metabolismo , Aorta/fisiologia , Diferenciação Celular/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Mesonefro/metabolismo , Células Mieloides/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caspase 3/metabolismo , Fatores Reguladores de Interferon/metabolismo , Mesonefro/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , RNA Mensageiro/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
19.
Nat Commun ; 7: 10784, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952187

RESUMO

During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs.


Assuntos
Aorta/metabolismo , Gônadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/metabolismo , Transdução de Sinais , Animais , Aorta/embriologia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Feminino , Gônadas/embriologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Masculino , Mesonefro/embriologia , Camundongos Endogâmicos C57BL
20.
Histopathology ; 68(7): 1013-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26484981

RESUMO

AIMS: To report a series of uterine corpus (n = 7) and ovarian (n = 5) neoplasms which we believe probably represent mesonephric adenocarcinomas based on their characteristic morphology and immunophenotype. METHODS AND RESULTS: All neoplasms exhibited a relatively constant and characteristic morphological appearance with an admixture of architectural patterns with small glands or tubules, some containing luminal eosinophilic colloid-like material, typically predominating. Solid and papillary architectures were also often present. The nuclear features were characteristic with atypical angulated clear vesicular nuclei which often exhibited overlapping. All the tumours were 'flat' negative with oestrogen receptor and progesterone receptor and all except one exhibited nuclear staining with thyroid transcription factor 1 (TTF1), which was often diffuse. All tumours exhibited wild-type staining with p53. CD10, calretinin and GATA binding protein 3 (GATA3) were positive in a variable proportion of the neoplasms. CONCLUSIONS: We believe these neoplasms to represent mesonephric adenocarcinomas which have only rarely been reported to arise in the uterine corpus and never in the ovary. We recommend they be termed mesonephric-like adenocarcinomas until their histogenesis is firmly established.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Uterinas/patologia , Adenocarcinoma/metabolismo , Adulto , Idoso , Núcleo Celular/metabolismo , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Mesonefro/metabolismo , Mesonefro/patologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Estudos Retrospectivos , Fatores de Transcrição , Neoplasias Uterinas/metabolismo , Útero/metabolismo , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA