Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800849

RESUMO

It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants.


Assuntos
Adaptação Fisiológica/genética , Agave/genética , Metabolismo Ácido das Crassuláceas/genética , Nicotiana/genética , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , Agave/metabolismo , Dióxido de Carbono/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Malatos/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/biossíntese , Salinidade , Estresse Fisiológico , Nicotiana/metabolismo , Transgenes
2.
Plant Cell Environ ; 43(12): 2987-3001, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677061

RESUMO

The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.


Assuntos
Bromeliaceae/genética , Metabolismo Ácido das Crassuláceas/genética , Especiação Genética , Evolução Biológica , Bromeliaceae/metabolismo , Bromeliaceae/fisiologia , Genes de Plantas/genética , Filogenia , Análise de Sequência de RNA , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA