Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.499
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727270

RESUMO

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Assuntos
Dano ao DNA , Reparo do DNA , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Animais , Instabilidade Genômica , Metabolismo Energético , Fosforilação Oxidativa
2.
Front Immunol ; 15: 1393852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711526

RESUMO

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Assuntos
Neoplasias dos Genitais Femininos , Mitocôndrias , Organelas , Humanos , Feminino , Neoplasias dos Genitais Femininos/patologia , Neoplasias dos Genitais Femininos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Organelas/metabolismo , Sobrevivência Celular , Animais , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Metabolismo Energético , Transdução de Sinais
3.
Sci Rep ; 14(1): 10616, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720012

RESUMO

Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Metabolismo Energético , Neoplasias Bucais , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Metabolismo Energético/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Inonotus/química , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Agaricales/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ciclo Celular/efeitos dos fármacos
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731898

RESUMO

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Assuntos
Envelhecimento , NAD , Ovário , Humanos , Feminino , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ovário/metabolismo , Animais , Sirtuínas/metabolismo , Metabolismo Energético , Fertilidade/fisiologia , Reprodução/fisiologia
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731929

RESUMO

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Assuntos
Cardiomiopatias , Sepse , Sepse/complicações , Sepse/metabolismo , Humanos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose , Trifosfato de Adenosina/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732013

RESUMO

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Assuntos
Ácido Abscísico , Receptor ERRalfa Relacionado ao Estrogênio , Metabolismo Energético , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Humanos , Animais , Ácido Abscísico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Function (Oxf) ; 5(3): zqae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706962

RESUMO

The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.


Assuntos
Trifosfato de Adenosina , Glicólise , Neoplasias , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Modelos Biológicos , Metabolismo Energético
8.
Redox Rep ; 29(1): 2347139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38718286

RESUMO

OBJECTIVES: The objective of this study was to investigate whether skeletal muscle cystathionine γ-lyase (CTH) contributes to high-fat diet (HFD)-induced metabolic disorders using skeletal muscle Cth knockout (CthΔskm) mice. METHODS: The CthΔskm mice and littermate Cth-floxed (Cthf/f) mice were fed with either HFD or chow diet for 13 weeks. Metabolomics and transcriptome analysis were used to assess the impact of CTH deficiency in skeletal muscle. RESULTS: Metabolomics coupled with transcriptome showed that CthΔskm mice displayed impaired energy metabolism and some signaling pathways linked to insulin resistance (IR) in skeletal muscle although the mice had normal insulin sensitivity. HFD led to reduced CTH expression and impaired energy metabolism in skeletal muscle in Cthf/f mice. CTH deficiency and HFD had some common pathways enriched in the aspects of amino acid metabolism, carbon metabolism, and fatty acid metabolism. CthΔskm+HFD mice exhibited increased body weight gain, fasting blood glucose, plasma insulin, and IR, and reduced glucose transporter 4 and CD36 expression in skeletal muscle compared to Cthf/f+HFD mice. Impaired mitochondria and irregular arrangement in myofilament occurred in CthΔskm+HFD mice. Omics analysis showed differential pathways enriched between CthΔskm mice and Cthf/f mice upon HFD. More severity in impaired energy metabolism, reduced AMPK signaling, and increased oxidative stress and ferroptosis occurred in CthΔskm+HFD mice compared to Cthf/f+HFD mice. DISCUSSION: Our results indicate that skeletal muscle CTH expression dysregulation contributes to metabolism disorders upon HFD.


Assuntos
Cistationina gama-Liase , Dieta Hiperlipídica , Hiperglicemia , Resistência à Insulina , Músculo Esquelético , Obesidade , Animais , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Camundongos , Obesidade/metabolismo , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/deficiência , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/metabolismo , Camundongos Knockout , Masculino , Metabolismo Energético
9.
Front Immunol ; 15: 1375461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711514

RESUMO

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Assuntos
Frutose , Neoplasias , Microambiente Tumoral , Humanos , Frutose/metabolismo , Frutose/efeitos adversos , Neoplasias/metabolismo , Neoplasias/etiologia , Animais , Reprogramação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Reprogramação Metabólica
10.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734691

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Assuntos
COVID-19 , Receptores ErbB , Mitocôndrias , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Humanos , Animais , Camundongos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Replicação Viral/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Células Vero , Chlorocebus aethiops , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732234

RESUMO

Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.


Assuntos
Metabolismo Energético , Peixes , Metais , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Animais , Metabolismo Energético/efeitos dos fármacos , Peixes/metabolismo , Metais/toxicidade , Metais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
12.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732272

RESUMO

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Assuntos
Metabolismo Energético , Pulmão , Morfogênese , Transdução de Sinais , Tretinoína , Animais , Tretinoína/metabolismo , Tretinoína/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Metabolismo Energético/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Embrião de Galinha , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Galinhas
13.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741080

RESUMO

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Assuntos
Proteínas de Bactérias , Regulação da Expressão Gênica de Plantas , Nicotiana , Fotossíntese , Phytoplasma , Doenças das Plantas , Folhas de Planta , Nicotiana/genética , Nicotiana/microbiologia , Phytoplasma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fotossíntese/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético/genética
14.
J Transl Med ; 22(1): 441, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730481

RESUMO

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Assuntos
Morte Celular , Células Gigantes , Interfase , Microtúbulos , Poliploidia , Humanos , Interfase/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Linhagem Celular Tumoral , Morte Celular/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
15.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R507-R514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586888

RESUMO

Diets varying in macronutrient composition, energy density, and/or palatability may cause differences in outcome of bariatric surgery. In the present study, rats feeding a healthy low-fat (LF) diet or an obesogenic high-fat/sucrose diet (HF/S) were either subjected to Roux-en-Y gastric bypass surgery (RYGB) or sham surgery, and weight loss trajectories and various energy balance parameters were assessed. Before RYGB, rats eating an HF/S (n = 14) diet increased body weight relative to rats eating an LF diet (n = 20; P < 0.01). After RYGB, absolute weight loss was larger in HF/S (n = 6) relative to LF feeding (n = 6) rats, and this was associated with reduced cumulative energy intake (EI; P < 0.05) and increased locomotor activity (LA; P < 0.05-0.001), finally leading to similar levels of reduced body fat content in HF/S and LF rats 3 wk after surgery. Regression analysis revealed that variation in RYGB-induced body weight loss was best explained by models including 1) postoperative cumulative EI and preoperative body weight (R2 = 0.87) and 2) postoperative cumulative EI and diet (R2 = 0.79), each without significant contribution of LA. Particularly rats on the LF diet became transiently more hypothermic and circadianally arrhythmic following RYGB (i.e., indicators of surgery-associated malaise) than HF/S feeding rats. Our data suggest that relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery, yet it promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.NEW & NOTEWORTHY Relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery in rats. Relative to feeding an LF diet, continued feeding an HF/S diet promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.


Assuntos
Ingestão de Energia , Derivação Gástrica , Ratos Wistar , Redução de Peso , Animais , Masculino , Ratos , Metabolismo Energético , Dieta Hiperlipídica , Peso Corporal , Obesidade/fisiopatologia , Obesidade/cirurgia , Obesidade/metabolismo , Restrição Calórica
16.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654385

RESUMO

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Assuntos
Angiostrongylus cantonensis , Metabolismo Energético , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Infecções por Strongylida , Animais , Feminino , Masculino , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Hormônios Hipofisários/metabolismo , Hormônios Hipofisários/farmacologia , Infecções por Strongylida/patologia
17.
Int Immunopharmacol ; 133: 111958, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608441

RESUMO

The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.


Assuntos
Leucócitos Mononucleares , Neoplasias Pulmonares , Mitocôndrias , Humanos , Neoplasias Pulmonares/patologia , Leucócitos Mononucleares/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Feminino , Camundongos , Pessoa de Meia-Idade , Carcinogênese , Benzo(a)pireno/toxicidade , Metabolismo Energético , Idoso , Camundongos Endogâmicos C57BL
18.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605423

RESUMO

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Regulação para Baixo , Camundongos Nus , Proteômica , Metabolismo Energético , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674060

RESUMO

Mandarin peel, a main by-product from the processing of citrus juice, has been highlighted for its various bioactivities and functional ingredients. Our previous study proved the inhibitory effects of Celluclast extract from mandarin peel (MPCE) on lipid accumulation and differentiation in 3T3-L1 adipocytes. Therefore, the current study aimed to evaluate the anti-obesity effect of MPCE in high-fat diet (HFD)-induced obese mice. The high-performance liquid chromatography (HPLC) analysis exhibited that narirutin and hesperidin are the main active components of MPCE. Our current results showed that MPCE supplementation decreased adiposity by reducing body and organ weights in HFD-induced obese mice. MPCE also reduced triglyceride (TG), alanine transaminase (ALT), aspartate transaminase (AST), and leptin contents in the serum of HFD-fed mice. Moreover, MPCE significantly inhibited hepatic lipid accumulation by regulating the expression levels of proteins associated with lipid metabolism, including sterol regulatory element-binding protein (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Furthermore, MPCE administration significantly inhibited both adipogenesis and lipogenesis, with modulation of energy metabolism by activating 5' adenosine monophosphate-activated protein kinase (AMPK) and lipolytic enzymes such as hormone-sensitive lipase (HSL) in the white adipose tissue (WAT). Altogether, our findings indicate that MPCE improves HFD-induced obesity and can be used as a curative agent in pharmaceuticals and nutraceuticals to alleviate obesity and related disorders.


Assuntos
Adipogenia , Citrus , Dieta Hiperlipídica , Dissacarídeos , Metabolismo Energético , Flavanonas , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Citrus/química , Camundongos , Metabolismo Energético/efeitos dos fármacos , Extratos Vegetais/farmacologia , Masculino , Adipogenia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3-L1 , Fármacos Antiobesidade/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Triglicerídeos/metabolismo , Triglicerídeos/sangue
20.
Sci Adv ; 10(15): eadl0372, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608014

RESUMO

Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.


Assuntos
Vesículas Extracelulares , Metformina , Humanos , Animais , Camundongos , Idoso , Metabolismo Energético , Envelhecimento , Senescência Celular , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA