Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Eur J Epidemiol ; 39(6): 667-678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555549

RESUMO

BACKGROUND: Smokers are at increased risk of type 2 diabetes (T2D), but the underlying mechanisms are unclear. We investigated if the smoking-T2D association is mediated by alterations in the metabolome and assessed potential interaction with genetic susceptibility to diabetes or insulin resistance. METHODS: In UK Biobank (n = 93,722), cross-sectional analyses identified 208 metabolites associated with smoking, of which 131 were confirmed in Mendelian Randomization analyses, including glycoprotein acetyls, fatty acids, and lipids. Elastic net regression was applied to create a smoking-related metabolic signature. We estimated hazard ratios (HR) of incident T2D in relation to baseline smoking/metabolic signature and calculated the proportion of the smoking-T2D association mediated by the signature. Additive interaction between the signature and genetic risk scores for T2D (GRS-T2D) and insulin resistance (GRS-IR) on incidence of T2D was assessed as relative excess risk due to interaction (RERI). FINDINGS: The HR of T2D was 1·73 (95% confidence interval (CI) 1·54 - 1·94) for current versus never smoking, and 38·3% of the excess risk was mediated by the metabolic signature. The metabolic signature and its mediation role were replicated in TwinGene. The metabolic signature was associated with T2D (HR: 1·61, CI 1·46 - 1·77 for values above vs. below median), with evidence of interaction with GRS-T2D (RERI: 0·81, CI: 0·23 - 1·38) and GRS-IR (RERI 0·47, CI: 0·02 - 0·92). INTERPRETATION: The increased risk of T2D in smokers may be mediated through effects on the metabolome, and the influence of such metabolic alterations on diabetes risk may be amplified in individuals with genetic susceptibility to T2D or insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Resistência à Insulina , Fumar , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Fumar/efeitos adversos , Fumar/genética , Estudos Transversais , Reino Unido/epidemiologia , Resistência à Insulina/genética , Adulto , Idoso , Análise da Randomização Mendeliana , Metaboloma/genética , Fatores de Risco , Metabolômica
2.
J Genet Genomics ; 51(7): 714-722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458562

RESUMO

Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities, although it often proves to be challenging and labor-intensive, particularly with non-model organisms. In this study, we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat. This construction results in a comprehensive structure-guided network, including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database. Using a combination of gene annotation, reaction classification, structure similarity, and correlations from transcriptome and metabolome analysis, a total of 229 potential genes related to these reactions are identified within this network. To validate the network, the functionality of a hydroxycinnamoyltransferase (TraesCS3D01G314900) for the synthesis of polyphenols and a rhamnosyltransferase (TraesCS2D01G078700) for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests, respectively. Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies.


Assuntos
Redes e Vias Metabólicas , Triticum , Triticum/genética , Triticum/metabolismo , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Metaboloma/genética , Transcriptoma/genética , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Multiômica
3.
Int J Cancer ; 153(1): 103-110, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757187

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies, which is featured by systematic metabolism. Thus, a better understanding of metabolic dysregulation in PDAC is important to better characterize its etiology. Here, we performed a large metabolome-wide association study (MWAS) to systematically explore associations between genetically predicted metabolite levels in blood and PDAC risk. Using data from 881 subjects of European descent in the TwinsUK Project, comprehensive genetic models were built to predict serum metabolite levels. These prediction models were applied to the genetic data of 8275 cases and 6723 controls included in the PanScan (I, II and III) and PanC4 consortia. After assessing the metabolite-PDAC risk associations by a slightly modified TWAS/FUSION framework, we identified five metabolites (including two dipeptides) showing significant associations with PDAC risk at false discovery rate (FDR) <0.05. Integrated with gut microbial information, two-sample Mendelian randomization (MR) analyses were further performed to investigate the relationship among serum metabolites, gut microbiome features and PDAC. The flavonoid-degrading bacteria Flavonifractor sp90199495 was found to be associated with metabolite X-21849 and it was also shown to be associated with PDAC risk. Collectively, our study identified novel candidate metabolites for PDAC risk, which could lead to new insights into the etiology of PDAC and improved treatment options.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Metaboloma/genética , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142707

RESUMO

As one of the oldest agricultural crops in China, millet (Panicum miliaceum) has powerful drought tolerance. In this study, transcriptome and metabolome analyses of 'Hequ Red millet' (HQ) and 'Yanshu No.10' (YS10) millet after 6 h of drought stress were performed. Transcriptome characteristics of drought stress in HQ and YS10 were characterized by Pacbio full-length transcriptome sequencing. The pathway analysis of the differentially expressed genes (DEGs) showed that the highly enriched categories were related to starch and sucrose metabolism, pyruvate metabolism, metabolic pathways, and the biosynthesis of secondary metabolites when the two millet varieties were subjected to drought stress. Under drought stress, 245 genes related to energy metabolism were found to show significant changes between the two strains. Further analysis showed that 219 genes related to plant hormone signal transduction also participated in the drought response. In addition, numerous genes involved in anthocyanin metabolism and photosynthesis were confirmed to be related to drought stress, and these genes showed significant differential expression and played an important role in anthocyanin metabolism and photosynthesis. Moreover, we identified 496 transcription factors related to drought stress, which came from 10 different transcription factor families, such as bHLH, C3H, MYB, and WRKY. Further analysis showed that many key genes related to energy metabolism, such as citrate synthase, isocitrate dehydrogenase, and ATP synthase, showed significant upregulation, and most of the structural genes involved in anthocyanin biosynthesis also showed significant upregulation in both strains. Most genes related to plant hormone signal transduction showed upregulated expression, while many JA and SA signaling pathway-related genes were downregulated. Metabolome analysis was performed on 'Hequ red millet' (HQ) and 'Yanshu 10' (YS10), a total of 2082 differential metabolites (DEMs) were identified. These findings indicate that energy metabolism, anthocyanins, photosynthesis, and plant hormones are closely related to the drought resistance of millet and adapt to adversity by precisely regulating the levels of various molecular pathways.


Assuntos
Antocianinas , Secas , Trifosfato de Adenosina/metabolismo , Antocianinas/metabolismo , Citrato (si)-Sintase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isocitrato Desidrogenase/genética , Metaboloma/genética , Milhetes/genética , Milhetes/metabolismo , Reguladores de Crescimento de Plantas , Piruvatos , Amido/metabolismo , Estresse Fisiológico/genética , Sacarose , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Nat Commun ; 13(1): 4923, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995766

RESUMO

Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , População Negra , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/genética , Humanos , Metaboloma/genética , Metabolômica , Espectrometria de Massas em Tandem
6.
Sci Rep ; 12(1): 14101, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982195

RESUMO

Crohn's disease (CD) is characterised by chronic inflammation. We aimed to identify a relationship between plasma inflammatory metabolomic signature and genomic data in CD using blood plasma metabolic profiles. Proton NMR spectroscopy were achieved for 228 paediatric CD patients. Regression (OPLS) modelling and machine learning (ML) approaches were independently applied to establish the metabolic inflammatory signature, which was correlated against gene-level pathogenicity scores generated for all patients and functional enrichment was analysed. OPLS modelling of metabolomic spectra from unfasted patients revealed distinctive shifts in plasma metabolites corresponding to regions of the spectrum assigned to N-acetyl glycoprotein, glycerol and phenylalanine that were highly correlated (R2 = 0.62) with C-reactive protein levels. The same metabolomic signature was independently identified using ML to predict patient inflammation status. Correlation of the individual peaks comprising this metabolomic signature of inflammation with pathogenic burden across 15,854 unselected genes identified significant enrichment for genes functioning within 'intrinsic component of membrane' (p = 0.003) and 'inflammatory bowel disease (IBD)' (p = 0.003). The seven genes contributing IBD enrichment are critical regulators of pro-inflammatory signaling. Overall, a metabolomic signature of inflammation can be detected from blood plasma in CD. This signal is correlated with pathogenic mutation in pro-inflammatory immune response genes.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Criança , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Humanos , Inflamação/genética , Doenças Inflamatórias Intestinais/patologia , Metaboloma/genética , Metabolômica
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409231

RESUMO

The Metabolome and Transcriptome are mutually communicating within cancer cells, and this interplay is translated into the existence of quantifiable correlation structures between gene expression and metabolite abundance levels. Studying these correlations could provide a novel venue of understanding cancer and the discovery of novel biomarkers and pharmacological strategies, as well as laying the foundation for the prediction of metabolite quantities by leveraging information from the more widespread transcriptomics data. In the current paper, we investigate the correlation between gene expression and metabolite levels in the Cancer Cell Line Encyclopedia dataset, building a direct correlation network between the two molecular ensembles. We show that a metabolite/transcript correlation network can be used to predict metabolite levels in different samples and datasets, such as the NCI-60 cancer cell line dataset, both on a sample-by-sample basis and in differential contrasts. We also show that metabolite levels can be predicted in principle on any sample and dataset for which transcriptomics data are available, such as the Cancer Genome Atlas (TCGA).


Assuntos
Neoplasias , Transcriptoma , Biomarcadores , Linhagem Celular Tumoral , Humanos , Metaboloma/genética , Metabolômica , Neoplasias/genética
8.
Nat Commun ; 13(1): 450, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064110

RESUMO

The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism.


Assuntos
Trifosfato de Adenosina/farmacologia , Arabidopsis/metabolismo , Espaço Extracelular/química , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Imunidade Inata/efeitos dos fármacos , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/genética , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais
9.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830002

RESUMO

Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of 'Siberia' lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6-8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.


Assuntos
Lilium/genética , Metaboloma/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Fatores de Transcrição/genética
10.
Sci Rep ; 11(1): 22119, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764412

RESUMO

REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is a global strategy and regulation policy of the EU that aims to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. It entered into force on 1st June 2007 (EC 1907/2006). REACH and EU policies plead for the use of robust high-throughput "omic" techniques for the in vitro investigation of the toxicity of chemicals that can provide an estimation of their hazards as well as information regarding the underlying mechanisms of toxicity. In agreement with the 3R's principles, cultured cells are nowadays widely used for this purpose, where metabolomics can provide a real-time picture of the metabolic effects caused by exposure of cells to xenobiotics, enabling the estimations about their toxicological hazards. High quality and robust metabolomics data sets are essential for precise and accurate hazard predictions. Currently, the acquisition of consistent and representative metabolomic data is hampered by experimental drawbacks that hinder reproducibility and difficult robust hazard interpretation. Using the differentiated human liver HepG2 cells as model system, and incubating with hepatotoxic (acetaminophen and valproic acid) and non-hepatotoxic compounds (citric acid), we evaluated in-depth the impact of several key experimental factors (namely, cell passage, processing day and storage time, and compound treatment) and instrumental factors (batch effect) on the outcome of an UPLC-MS metabolomic analysis data set. Results showed that processing day and storage time had a significant impact on the retrieved cell's metabolome, while the effect of cell passage was minor. Meta-analysis of results from pathway analysis showed that batch effect corrections and quality control (QC) measures are critical to enable consistent and meaningful estimations of the effects caused by compounds on cells. The quantitative analysis of the changes in metabolic pathways upon bioactive compound treatment remained consistent despite the concurrent causes of metabolomic data variation. Thus, upon appropriate data retrieval and correction and by an innovative metabolic pathway analysis, the metabolic alteration predictions remained conclusive despite the acknowledged sources of variability.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/efeitos dos fármacos , Metabolômica/métodos , Acetaminofen/toxicidade , Linhagem Celular Tumoral , Ácido Cítrico/toxicidade , Células Hep G2 , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Ácido Valproico/toxicidade , Xenobióticos/toxicidade
11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638954

RESUMO

Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages. Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight, and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for GC-MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs) were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct metabolic pathways including the Acetyl-coA metabolic process, activation of immune response, b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches.


Assuntos
Carcinogênese/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Carga Tumoral/genética , Animais , Antineoplásicos Hormonais/uso terapêutico , Carcinogênese/genética , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Invasividade Neoplásica/genética , RNA Ribossômico 16S , RNA-Seq , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
12.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299017

RESUMO

Oxygen deficiency in cells, tissues, and organs can not only prevent the proper development of biological functions but it can also lead to several diseases and disorders. In this sense, the kidney deserves special attention since hypoxia can be considered an important factor in the pathophysiology of both acute kidney injury and chronic kidney disease. To provide better knowledge to unveil the molecular mechanisms involved, new studies are necessary. In this sense, this work aims to study, for the first time, an in vitro model of hypoxia-induced metabolic alterations in human proximal tubular HK-2 cells because renal proximal tubules are particularly susceptible to hypoxia. Different groups of cells, cultivated under control and hypoxia conditions at 0.5, 5, 24, and 48 h, were investigated using untargeted metabolomic approaches based on reversed-phase liquid chromatography-mass spectrometry. Both intracellular and extracellular fluids were studied to obtain a large metabolite coverage. On the other hand, multivariate and univariate analyses were carried out to find the differences among the cell groups and to select the most relevant variables. The molecular features identified as affected metabolites were mainly amino acids and Amadori compounds. Insights about their biological relevance are also provided.


Assuntos
Hipóxia Celular , Cromatografia de Fase Reversa/métodos , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Ativação Metabólica/genética , Ativação Metabólica/fisiologia , Hipóxia Celular/genética , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Rim/citologia , Rim/metabolismo , Rim/patologia , Metaboloma/genética , Análise Multivariada , Análise de Componente Principal
13.
Sci Rep ; 11(1): 13738, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215757

RESUMO

We investigated longitudinal associations of moderate-to-vigorous physical activity (MVPA) and light-intensity physical activity (LPA) with plasma concentrations of 138 metabolites after colorectal cancer (CRC) treatment. Self-reported physical activity data and blood samples were obtained at 6 weeks, and 6, 12 and 24 months post-treatment in stage I-III CRC survivors (n = 252). Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQp180 kit). Linear mixed models were used to evaluate confounder-adjusted longitudinal associations. Inter-individual (between-participant differences) and intra-individual associations (within-participant changes over time) were assessed as percentage difference in metabolite concentration per 5 h/week of MVPA or LPA. At 6 weeks post-treatment, participants reported a median of 6.5 h/week of MVPA (interquartile range:2.3,13.5) and 7.5 h/week of LPA (2.0,15.8). Inter-individual associations were observed with more MVPA being related (FDR-adjusted q-value < 0.05) to higher concentrations of arginine, citrulline and histidine, eight lysophosphatidylcholines, nine diacylphosphatidylcholines, 13 acyl-alkylphosphatidylcholines, two sphingomyelins, and acylcarnitine C10:1. No intra-individual associations were found. LPA was not associated with any metabolite. More MVPA was associated with higher concentrations of several lipids and three amino acids, which have been linked to anti-inflammatory processes and improved metabolic health. Mechanistic studies are needed to investigate whether these metabolites may affect prognosis.


Assuntos
Neoplasias Colorretais/sangue , Exercício Físico/fisiologia , Metaboloma/genética , Idoso , Arginina/sangue , Sobreviventes de Câncer , Carnitina/análogos & derivados , Carnitina/sangue , Citrulina/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Histidina/sangue , Humanos , Estudos Longitudinais , Lisofosfatidilcolinas/sangue , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Autorrelato , Esfingomielinas/sangue , Espectrometria de Massas em Tandem
14.
PLoS Genet ; 17(6): e1009603, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143769

RESUMO

The inability to maintain a strictly regulated endo(lyso)somal acidic pH through the proton-pumping action of the vacuolar-ATPases (v-ATPases) has been associated with various human diseases including heritable connective tissue disorders. Autosomal recessive (AR) cutis laxa (CL) type 2C syndrome is associated with genetic defects in the ATP6V1E1 gene and is characterized by skin wrinkles or loose redundant skin folds with pleiotropic systemic manifestations. The underlying pathological mechanisms leading to the clinical presentations remain largely unknown. Here, we show that loss of atp6v1e1b in zebrafish leads to early mortality, associated with craniofacial dysmorphisms, vascular anomalies, cardiac dysfunction, N-glycosylation defects, hypotonia, and epidermal structural defects. These features are reminiscent of the phenotypic manifestations in ARCL type 2C patients. Our data demonstrates that loss of atp6v1e1b alters endo(lyso)somal protein levels, and interferes with non-canonical v-ATPase pathways in vivo. In order to gain further insights into the processes affected by loss of atp6v1e1b, we performed an untargeted analysis of the transcriptome, metabolome, and lipidome in early atp6v1e1b-deficient larvae. We report multiple affected pathways including but not limited to oxidative phosphorylation, sphingolipid, fatty acid, and energy metabolism together with profound defects on mitochondrial respiration. Taken together, our results identify complex pathobiological effects due to loss of atp6v1e1b in vivo.


Assuntos
Anormalidades Múltiplas/genética , Cútis Laxa/genética , Células Epiteliais/metabolismo , Pele/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Peixe-Zebra/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Modelos Animais de Doenças , Endossomos/metabolismo , Endossomos/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lipidômica , Longevidade/genética , Lisossomos/metabolismo , Lisossomos/patologia , Metaboloma/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosforilação Oxidativa , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Pele/patologia , Síndrome , Transcriptoma , ATPases Vacuolares Próton-Translocadoras/deficiência , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência
15.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063570

RESUMO

Understanding the global metabolic changes during the senescence of tumor cells can have implications for developing effective anti-cancer treatment strategies. Ionizing radiation (IR) was used to induce senescence in a human colon cancer cell line HCT-116 to examine secretome and metabolome profiles. Control proliferating and senescent cancer cells (SCC) exhibited distinct morphological differences and expression of senescent markers. Enhanced secretion of pro-inflammatory chemokines and IL-1, anti-inflammatory IL-27, and TGF-ß1 was observed in SCC. Significantly reduced levels of VEGF-A indicated anti-angiogenic activities of SCC. Elevated levels of tissue inhibitors of matrix metalloproteinases from SCC support the maintenance of the extracellular matrix. Adenylate and guanylate energy charge levels and redox components NAD and NADP and glutathione were maintained at near optimal levels indicating the viability of SCC. Significant accumulation of pyruvate, lactate, and suppression of the TCA cycle in SCC indicated aerobic glycolysis as the predominant energy source for SCC. Levels of several key amino acids decreased significantly, suggesting augmented utilization for protein synthesis and for use as intermediates for energy metabolism in SCC. These observations may provide a better understanding of cellular senescence basic mechanisms in tumor tissues and provide opportunities to improve cancer treatment.


Assuntos
Senescência Celular/genética , Neoplasias do Colo/genética , Redes e Vias Metabólicas/genética , Metaboloma/genética , Senescência Celular/efeitos da radiação , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Interleucina-1/genética , Interleucina-27/genética , Redes e Vias Metabólicas/efeitos da radiação , Metaboloma/efeitos da radiação , Radiação Ionizante , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/genética
16.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073989

RESUMO

(1) Background: The transforming growth factor (TGF)-ß plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-ß expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-ß induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-ß in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-ß when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-ß in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Células Hep G2 , Humanos , Metaboloma/genética , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transcriptoma/genética
17.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066340

RESUMO

Watercore is a physiological disorder that commonly occurs in sand pear cultivars. The typical symptom of watercore tissue is transparency, and it is often accompanied by browning, breakdown and a bitter taste during fruit ripening. To better understand the molecular mechanisms of watercore affecting fruit quality, this study performed transcriptome and metabolome analyses on watercore pulp from "Akibae" fruit 125 days after flowering. The present study found that the "Akibae" pear watercore pulp contained higher sorbitol and sucrose than healthy fruit. Moreover, the structure of the cell wall was destroyed, and the content of pectin, cellulose and hemicellulose was significantly decreased. In addition, the content of ethanol and acetaldehyde was significantly increased, and the content of polyphenol was significantly decreased. Watercore induced up-regulated expression levels of sorbitol synthesis-related (sorbitol-6-phosphate dehydrogenase, S6PDH) and sucrose synthesis-related genes (sucrose synthesis, SS), whereas it inhibited the expression of sorbitol decomposition-related genes (sorbitol dehydrogenase, SDH) and sorbitol transport genes (sorbitol transporter, SOT). Watercore also strongly induced increased expression levels of cell wall-degrading enzymes (polygalactosidase, PG; ellulase, CX; pectin methylesterase, PME), as well as ethanol synthesis-related (alcohol dehydrogenase, ADH), acetaldehyde synthesis-related (pyruvate decarboxylase, PDC) and polyphenol decomposition-related genes (polyphenol oxidase, PPO). Moreover, the genes that are involved in ethylene (1-aminocyclopropane- 1-carboxylate oxidase, ACO; 1-aminocyclopropane- 1-carboxylate synthase, ACS) and abscisic acid (short-chain alcohol dehydrogenase, SDR; aldehyde oxidase, AAO) synthesis were significantly up-regulated. In addition, the bitter tasting amino acids, alkaloids and polyphenols were significantly increased in watercore tissue. Above all, these findings suggested that the metabolic disorder of sorbitol and sucrose can lead to an increase in plant hormones (abscisic acid and ethylene) and anaerobic respiration, resulting in aggravated fruit rot and the formation of bitter substances.


Assuntos
Frutas/genética , Frutas/metabolismo , Metaboloma/genética , Doenças das Plantas/genética , Pyrus/genética , Pyrus/metabolismo , Transcriptoma/genética , Ácido Abscísico/metabolismo , Acetaldeído/análise , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Etanol/análise , Etilenos/metabolismo , Frutas/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Modelos Biológicos , Fenóis/análise , Pyrus/ultraestrutura , Análise de Sequência de RNA , Paladar
18.
Mol Genet Genomics ; 296(4): 953-970, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34009475

RESUMO

Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.


Assuntos
Flavonoides/biossíntese , Redes e Vias Metabólicas/genética , Nymphaeaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma/genética , Metabolômica , Nymphaeaceae/genética , Nymphaeaceae/crescimento & desenvolvimento , Nymphaeaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
J Integr Plant Biol ; 63(8): 1416-1421, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33930259

RESUMO

The ubiquitous volatile linalool is metabolized in plants to nonvolatile derivatives. We studied Nicotiana attenuata plants which naturally vary in (S)-(+)-linalool contents, and lines engineered to produce either (R)-(-)- or (S)-(+)-linalool. Only (S)-(+)-linalool production was associated with slower growth of a generalist herbivore, and a large fraction was present as nonvolatile derivatives. We found that variation in volatile linalool and its nonvolatile glycosides mapped to the same genetic locus which harbored the biosynthetic gene, NaLIS, but that free linalool varied more in environmental responses. This study reveals how (S)-(+)-linalool and conjugates differ in their regulation and possible functions in resistance.


Assuntos
Monoterpenos Acíclicos/metabolismo , Loci Gênicos , Variação Genética , Metaboloma/genética , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Nicotiana/genética
20.
Biochem J ; 478(8): 1631-1646, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33843973

RESUMO

Inorganic polyphosphate (polyP) is a linear polymer composed of up to a few hundred orthophosphates linked together by high-energy phosphoanhydride bonds, identical with those found in ATP. In mammalian mitochondria, polyP has been implicated in multiple processes, including energy metabolism, ion channels function, and the regulation of calcium signaling. However, the specific mechanisms of all these effects of polyP within the organelle remain poorly understood. The central goal of this study was to investigate how mitochondrial polyP participates in the regulation of the mammalian cellular energy metabolism. To accomplish this, we created HEK293 cells depleted of mitochondrial polyP, through the stable expression of the polyP hydrolyzing enzyme (scPPX). We found that these cells have significantly reduced rates of oxidative phosphorylation (OXPHOS), while their rates of glycolysis were elevated. Consistent with this, metabolomics assays confirmed increased levels of metabolites involved in glycolysis in these cells, compared with the wild-type samples. At the same time, key respiratory parameters of the isolated mitochondria were unchanged, suggesting that respiratory chain activity is not affected by the lack of mitochondrial polyP. However, we detected that mitochondria from cells that lack mitochondrial polyP are more fragmented when compared with those from wild-type cells. Based on these results, we propose that mitochondrial polyP plays an important role as a regulator of the metabolic switch between OXPHOS and glycolysis.


Assuntos
Hidrolases Anidrido Ácido/genética , Glicólise/genética , Metaboloma/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Linhagem Celular Transformada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hidrólise , Metabolômica/métodos , Mitocôndrias/genética , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA