Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.118
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732234

RESUMO

Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.


Assuntos
Metabolismo Energético , Peixes , Metais , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Animais , Metabolismo Energético/efeitos dos fármacos , Peixes/metabolismo , Metais/toxicidade , Metais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Mar Pollut Bull ; 202: 116339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598932

RESUMO

The main objectives of this study are to measure permanent organic and inorganic pollutants in detail in an area that hosts historical structures underneath and feeds the huge ecosystem with water, to reveal risk values. Total PAH concentrations in the samples ranged from 43.41 to 202.7 ng/g. Total OCP concentration ranged from 5.15 to 17.98 ng/g, while total PCB concentration ranged from 0.179 to 0.921 ng/g. PCB 28/31, 138, and 153 are the highest detected PCBs. It was found that the lake sediment reached toxic equivalent quotient (TEQ) values of 29.21 for total PAHs and 28.90 for carcinogenic PAHs. Negligible concentration risk quotient had a low to moderate ecological and toxicological risk between 12.91 and 64.42. Highest pollution index value was found 3.81 and the risk index value reached 417.4. It has been revealed that toxicologically risky components accumulate over many years even in the best-protected water resources.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Lagos/química , Poluentes Químicos da Água/análise , Medição de Risco , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Bifenilos Policlorados/análise , Poluentes Orgânicos Persistentes , Metais/análise , Ecotoxicologia
4.
Mar Pollut Bull ; 202: 116375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621352

RESUMO

The massive industrial growth in Gresik, East Java, Indonesia has the potential to result in metal contamination in the nearby coastal waters. The purpose of this study was to analyze the metal concentrations in edible species from the Gresik coastal waters and evaluate the potential health risks linked to this metal contamination. Metal concentrations (Cu, Fe, Pb, Zn, As, Cd, Ni, Hg, and Cr) in fish and shrimp samples mostly met the maximum limits established by national and international regulatory organizations. The concentrations of As in Scatophagus argus exceed both the permissible limit established by Indonesia and the provisional tolerable weekly intake (PTWI). The As concentration in Arius bilineatus is equal to the PTWI. The target cancer risk (TCR) values for both As and Cr in all analyzed species exceed the threshold of 0.0001, suggesting that these two metals possess the potential to provide a cancer risk to humans.


Assuntos
Monitoramento Ambiental , Peixes , Metais , Poluentes Químicos da Água , Indonésia , Poluentes Químicos da Água/análise , Animais , Metais/análise , Medição de Risco , Metais Pesados/análise , Humanos , Contaminação de Alimentos/análise , Alimentos Marinhos/análise
5.
Acta Orthop ; 95: 174-179, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629902

RESUMO

BACKGROUND AND PURPOSE: Concerns have emerged regarding elevated levels of cobalt and chromium in patients with metal-on-metal megaprostheses. This prospective study aims to identify systemic cobalt and chromium levels in metal-on-polyethylene knee and hip megaprostheses and their associations with other factors. METHODS: 56 patients underwent knee or hip megaprosthesis surgery at 2 sarcoma centers. Serum cobalt and chromium levels were measured preoperatively and thrice within the first year using inductively coupled plasma mass spectrometry. RESULTS: A statistically significant difference in serum cobalt levels (1.4 ppb; 95% confidence interval [CI] 0.0-3.3) was observed 1 year after knee megaprosthesis surgery compared with preoperative levels. In contrast no difference in chromium levels was observed after 1 year compared with preoperative levels (0.05 ppb; CI 0.0-0.8). An association between younger age, higher eGFR, and increased cobalt levels was observed. No significant correlations were found between ion levels and resection length or the number of modular connections. CONCLUSION: We found elevated serum ion levels in metal-on-polyethylene knee megaprostheses in contrast to metal-on-polyethylene hip megaprostheses. Furthermore, a positive correlation between cobalt and chromium levels, and between cobalt and eGFR was identified, along with a negative correlation between cobalt and age. This study highlights the importance of monitoring systemic cobalt and chromium levels in patients with megaprostheses.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Cobalto , Estudos Prospectivos , Polietileno , Estudos de Coortes , Prótese de Quadril/efeitos adversos , Metais , Cromo , Artroplastia de Quadril/métodos , Desenho de Prótese
6.
Biochemistry (Mosc) ; 89(Suppl 1): S180-S204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621750

RESUMO

In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.


Assuntos
Metais , Estresse Oxidativo , Metais/química , Metais/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional
7.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612636

RESUMO

Cadmium (Cd) is one of the most dangerous environmental pollutants. Its mechanism of action is multidirectional; among other things, it disrupts the balance of key essential elements. The aim of this study was to assess how cumulative exposure to Cd influences its interaction with selected essential elements (Cu, Zn, Ca, and Mg) in the kidney and liver during long-term observation (90 and 180 days) after subchronic exposure of rats (90 days) to Cd at common environmental (0.09 and 0.9 mg Cd/kg b.w.) and higher (1.8 and 4.5 mg Cd/kg b.w.) doses. Cd and essential elements were analyzed using the F-AAS and GF-AAS techniques. It was shown that the highest bioaccumulation of Cd in the kidney occurred six months after the end of exposure, and importantly, the highest accumulation was found after the lowest Cd dose (i.e., environmental exposure). Organ bioaccumulation of Cd (>21 µgCd/g w.w. in the kidney and >6 µgCd/g w.w. in the liver) was accompanied by changes in the other studied essential elements, particularly Cu in both the kidney and liver and Zn in the liver; these persisted for as long as six months after the end of the exposure. The results suggest that the critical concentration in human kidneys (40 µgCd/g w.w.), currently considered safe, may be too high and should be reviewed, as the observed long-term imbalance of Cu/Zn in the kidneys may lead to renal dysfunction.


Assuntos
Cádmio , Fígado , Humanos , Animais , Ratos , Cádmio/toxicidade , Seguimentos , Rim , Metais , Homeostase
8.
J Am Chem Soc ; 146(15): 10632-10639, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579124

RESUMO

Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.


Assuntos
RNA Catalítico , RNA , RNA/química , Metais , Fosfatos de Dinucleosídeos , Fosfatos , Catálise , Oxigênio , Íons , RNA Catalítico/química
9.
ACS Sens ; 9(4): 1938-1944, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591496

RESUMO

The adsorption of oxygen and its reaction with target gases are the basis of the gas detection mechanism by using metal oxides. Here, we present a theoretical analysis of the sensor response, within the ionosorption model, for an n-type polycrystalline semiconductor. Our goal of our work is to reveal the mechanisms of gas sensing from a fundamental point of view. We revisit the existing models in which the sensor response presents a power-law behavior with a reducing gas partial pressure. Then, we show, based on the Wolkenstein theory of chemisorption, that the sensor response depends not only on the reducing gas partial pressure but also on the oxygen partial pressure. We also find that the obtained sensor response does not explicitly depend on the grain size, and if it does, it is exclusively through the rate constants related to the involved reactions.


Assuntos
Gases , Óxidos , Oxigênio , Oxigênio/química , Óxidos/química , Gases/química , Semicondutores , Pressão , Metais/química , Adsorção , Oxirredução
10.
ACS Sens ; 9(4): 1896-1905, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626402

RESUMO

With the escalating global awareness of air quality management, the need for continuous and reliable monitoring of toxic gases by using low-power operating systems has become increasingly important. One of which, semiconductor metal oxide gas sensors have received great attention due to their high/fast response and simple working mechanism. More specifically, self-heating metal oxide gas sensors, wherein direct thermal activation in the sensing material, have been sought for their low power-consuming characteristics. However, previous works have neglected to address the temperature distribution within the sensing material, resulting in inefficient gas response and prolonged response/recovery times, particularly due to the low-temperature regions. Here, we present a unique metal/metal oxide/metal (MMOM) nanowire architecture that conductively confines heat to the sensing material, achieving high uniformity in the temperature distribution. The proposed structure enables uniform thermal activation within the sensing material, allowing the sensor to efficiently react with the toxic gas. As a result, the proposed MMOM gas sensor showed significantly enhanced gas response (from 6.7 to 20.1% at 30 ppm), response time (from 195 to 17 s at 30 ppm), and limit of detection (∼1 ppm) when compared to those of conventional single-material structures upon exposure to carbon monoxide. Furthermore, the proposed work demonstrated low power consumption (2.36 mW) and high thermal durability (1500 on/off cycles), demonstrating its potential for practical applications in reliable and low-power operating gas sensor systems. These results propose a new paradigm for power-efficient and robust self-heating metal oxide gas sensors with potential implications for other fields requiring thermal engineering.


Assuntos
Gases , Nanofios , Óxidos , Nanofios/química , Gases/química , Gases/análise , Óxidos/química , Metais/química
11.
ACS Appl Bio Mater ; 7(4): 2346-2353, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556982

RESUMO

In this study, we designed and synthesized metalloporphyrin derivatives (with Ni and Zn) specifically intended for the fluorescence detection of nicotine in aqueous solutions. Our results showcased a notable selectivity for nicotine over other naturally occurring food toxins, exhibiting an exceptional sensitivity with a limit of detection as low as 7.2 nM. Through mechanistic investigations (1H NMR, FT-IR, etc.), we elucidated the binding mechanism, revealing the specific interaction between the pyridine ring of nicotine and the metal center, while the N atom pyrrolidine unit engaged in the hydrogen bonding with the side chain of the porphyrin ring. Notably, we observed that the nature of the metal center dictated the extent of interaction with nicotine; particularly, Zn-porphyrin demonstrated a superior response compared to Ni-porphyrin. Furthermore, we performed the quantitative estimation of nicotine in commercially available tobacco products. Additionally, we conducted the antibacterial (Staphylococcus aureus and Escherichia coli) and antifungal (Candida albicans) activities of the porphyrin derivatives.


Assuntos
Metaloporfirinas , Porfirinas , Metaloporfirinas/farmacologia , Nicotina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Porfirinas/farmacologia , Porfirinas/química , Escherichia coli
12.
Wei Sheng Yan Jiu ; 53(2): 267-274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604963

RESUMO

OBJECTIVE: To investigate the association of metals/metalloids exposure with risk of liver disfunction among occupational population in Hunan Province, and to explore the potential dose-response relationship. METHODS: In 2017, a mining area in Hunan Province was chosen as the research site, and eligible workers were recruited as study subjects. General demographic characteristics, levels of 23 metals/metalloids in plasma and urine, and liver function index(total bilirubin(TBIL), alanine amino transferase(ALT), globulin(GLB) and γ-glutamyl transferase(GGT)) were obtained by questionnaire, physical examination and laboratory tests. Participants were followed up in 2018, 2019 and 2020 respectively. Cox proportional risk model was used to evaluate the relationship between metal/metalloids exposure and risk of liver disfunction, and dose-response relationship curves were plotted by using the restricted cubic spline function. RESULTS: A total of 891 employees were recruited in the study, 576(65.0%)were aged ≤45 years, 832(93.4%) were male and 530(59.5%) worked as smelters. After adjusting various factors such as age, gender, BMI, type of work, education, smoking, alcohol consumption, diet, stress, medical history, exercise and tea consumption, positive correlations were found between plasma tungsten(HR=4.90, 95%CI 1.17-20.48) and urinary barium(HR=1.07, 95%CI 1.02-1.12) levels with abnormally elevated TBIL levels. Additionally, a significant association was observed between plasma thallium and the risk of elevated ALT levels(HR=11.15, 95%CI 1.97-63.29). CONCLUSION: Plasma tungsten and thallium, along with barium found in urine, are risk factors for the development of abnormally elevated liver function indices in occupational groups.


Assuntos
Hepatopatias , Metaloides , Humanos , Masculino , Feminino , Estudos Prospectivos , Tálio , Bário , Tungstênio , Metais
13.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678018

RESUMO

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Assuntos
Morte Celular , Metais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Metais/metabolismo , Animais , Mitofagia , Ferroptose , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
14.
Commun Biol ; 7(1): 505, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678117

RESUMO

Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.


Assuntos
Microscopia Crioeletrônica , Ácidos Graxos , alfa-Fetoproteínas , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/química , Glicosilação , Sítios de Ligação , Humanos , Ácidos Graxos/metabolismo , Metais/metabolismo , Metais/química , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
15.
Mar Pollut Bull ; 202: 116383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677105

RESUMO

Metal pollution in sediment from construction areas raises ecological and health concerns, yet source-based sediment pollution in Bangladesh remains understudied. Our investigation focused on fifteen locations in the Kohelia River and the coastal regions near the Matarbari projects (Matarbari Power Plant, Matarbari Deep Seaport), assessing metal concentrations' sources and impacts on ecology and human well-being. Sediment quality indices indicated high Cd and Cr contamination, with sites near Matarbari projects being the most polluted. The positive matrix factorization model identified three anthropogenic sources and mixed sources. Matarbari projects contributed significantly to As (67.9 %), Mn (50.25 %), Cd (48.35 %), and Cr (41.0 %), while ship-breaking yards contributed Fe (58.0 %), Zn (55.5 %), Pb (53.8 %), and Cu (36.1 %). Ecological indices showed different impacts on aquatic life from metal pollution, but cancer risk levels stayed below the threshold set by the US Environmental Protection Agency. These findings underscore the need for targeted measures to address metal pollution.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Bangladesh , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Medição de Risco , Metais/análise , Metais Pesados/análise , Rios/química
16.
Bone Joint J ; 106-B(5): 482-491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688478

RESUMO

Aims: Metal and ceramic humeral head bearing surfaces are available choices in anatomical shoulder arthroplasties. Wear studies have shown superior performance of ceramic heads, however comparison of clinical outcomes according to bearing surface in total shoulder arthroplasty (TSA) and hemiarthroplasty (HA) is limited. This study aimed to compare the rates of revision and reoperation following metal and ceramic humeral head TSA and HA using data from the National Joint Registry (NJR), which collects data from England, Wales, Northern Ireland, Isle of Man and the States of Guernsey. Methods: NJR shoulder arthroplasty records were linked to Hospital Episode Statistics and the National Mortality Register. TSA and HA performed for osteoarthritis (OA) in patients with an intact rotator cuff were included. Metal and ceramic humeral head prostheses were matched within separate TSA and HA groups using propensity scores based on 12 and 11 characteristics, respectively. The primary outcome was time to first revision and the secondary outcome was non-revision reoperation. Results: A total of 4,799 TSAs (3,578 metal, 1,221 ceramic) and 1,363 HAs (1,020 metal, 343 ceramic) were included. The rate of revision was higher for metal compared with ceramic TSA, hazard ratio (HR) 3.31 (95% confidence interval (CI) 1.67 to 6.58). At eight years, prosthesis survival for ceramic TSA was 98.7% (95% CI 97.3 to 99.4) compared with 96.4% (95% CI 95.2 to 97.3) for metal TSA. The majority of revision TSAs were for cuff insufficiency or instability/dislocation. There was no significant difference in the revision rate for ceramic compared with metal head HA (HR 1.33 (95% CI 0.76 to 2.34)). For ceramic HA, eight-year prosthetic survival was 92.8% (95% CI 86.9 to 96.1), compared with 91.6% (95% CI 89.3 to 93.5) for metal HA. The majority of revision HAs were for cuff failure. Conclusion: The rate of all-cause revision was higher following metal compared with ceramic humeral head TSA in patients with OA and an intact rotator cuff. There was no difference in the revision rate for HA according to bearing surface.


Assuntos
Artroplastia do Ombro , Cerâmica , Hemiartroplastia , Desenho de Prótese , Falha de Prótese , Reoperação , Prótese de Ombro , Humanos , Reoperação/estatística & dados numéricos , Hemiartroplastia/métodos , Masculino , Feminino , Artroplastia do Ombro/métodos , Idoso , Pessoa de Meia-Idade , Osteoartrite/cirurgia , Sistema de Registros , Cabeça do Úmero/cirurgia , Idoso de 80 Anos ou mais , Metais
17.
Biomed Pharmacother ; 174: 116574, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593706

RESUMO

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Assuntos
Morte Celular , Neoplasias Gastrointestinais , Metais , Humanos , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Íons/metabolismo , Antineoplásicos/farmacologia
18.
Metallomics ; 16(4)2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503570

RESUMO

Metallothioneins (MTs) are cysteine-rich proteins involved in metal homeostasis, heavy metal detoxification, and protection against oxidative stress. Whether the four mammalian MT isoforms exhibit different metal binding properties is not clear. In this paper, the Cu(I) binding properties of the apo MT1A, apo MT2, and apo MT3 are compared and the relative Cu(I) binding affinities are reported. In all three isoforms, Cu4, Cu6, and Cu10 species form cooperatively, and MT1A and MT2 also form a Cu13 species. The Cu(I) binding properties of Zn7-MT1A, Zn7-MT2, and Zn7-MT3 are compared systematically using isotopically pure 63Cu(I) and 68Zn(II). The species formed in each MT isoform were detected through electrospray ionization-mass spectrometry and further characterized using room temperature phosphorescence spectroscopy. The mixed metal Cu, Zn species forming in MT1A, MT2, and MT3 have similar stoichiometries and their emission spectral properties indicate that analogous clusters form in the three isoforms. Three parallel metallation pathways have been proposed through analysis of the detailed Cu, Zn speciation in MT1A, MT2, and MT3. Pathway ① results in Cu5Zn5-MT and Cu9Zn3-MT. Pathway ② involves Cu6Zn4-MT and Cu10Zn2-MT. Pathway ③ includes Cu8Zn4-MT. Speciation analysis indicates that Pathway ② is the preferred pathway for MT2. This is also evident in the phosphorescence spectra with the 750 nm emission from Cu6Zn4-MT being most prominent in MT2. We see no evidence for different MT isoforms being optimized or exhibiting preferences for certain metals. We discuss the probable stoichiometry for MTs in vivo based on the in vitro determined binding constants.


Assuntos
Metalotioneína , Isótopos de Zinco , Animais , Humanos , Metalotioneína/metabolismo , Metais/metabolismo , Isoformas de Proteínas , Mamíferos/metabolismo
19.
Cancer Sci ; 115(5): 1446-1458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438247

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients have late presentation at the time of diagnosis and a poor prognosis. Metal dyshomeostasis is known to play a role in cancer progression. However, the blood and tissue metallome of PDAC patients has not been assessed. This study aimed to determine the levels of essential and toxic metals in the serum and pancreatic tissue from PDAC patients. Serum samples were obtained from PDAC patients before surgical resection. Tissue (tumor and adjacent normal pancreas) were obtained from the surgically resected specimen. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis was performed to quantify the levels of 10 essential and 3 toxic metals in these samples. Statistical analysis was performed to identify dysregulated metals in PDAC and their role as potential diagnostic and prognostic biomarkers. Significantly decreased serum levels of magnesium, potassium, calcium, iron, zinc, selenium, arsenic, and mercury and increased levels of molybdenum were shown to be associated with PDAC. There were significantly decreased levels of zinc, manganese and molybdenum, and increased levels of calcium and selenium in the pancreatic tumor tissue compared with the adjacent normal pancreas. Notably, lower serum levels of calcium, iron, and selenium, and higher levels of manganese, were significantly associated with a poor prognosis (i.e., overall survival) in PDAC patients. In conclusion, this is the first study to comprehensively assess the serum and tissue metallome of PDAC patients. It identified the association of metals with PDAC diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Prognóstico , Metais/sangue , Metais/metabolismo , Metais/análise , Pâncreas/metabolismo , Pâncreas/patologia , Magnésio/sangue , Magnésio/metabolismo , Magnésio/análise , Adulto , Cálcio/sangue , Cálcio/metabolismo , Cálcio/análise , Selênio/sangue , Selênio/análise , Selênio/metabolismo , Ferro/metabolismo , Ferro/sangue , Zinco/sangue , Zinco/metabolismo , Zinco/análise , Molibdênio/sangue
20.
Langmuir ; 40(12): 6094-6106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470353

RESUMO

Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Metais/química , Proteínas Amiloidogênicas , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA