Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Process Impacts ; 26(3): 555-581, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305448

RESUMO

To study the geogenic processes of naturally occurring radioactive materials' (NORMs') distribution, a transboundary Himalayan river (Punarbhaba) is chosen due to its trivial anthropogenic impacts. In explaining the genesis of radionuclides, transition elements (Sc, Ti, V, and Fe), rare-earth-elements (REEs: La, Eu, Ce, Yb, Sm, and Lu), Ta, Hf, Th, and U were analysed in 30 riverbed sediments collected from the Bangladeshi portion of the river. Elemental abundances and NORMs' activity were measured by neutron activation analysis and HPGe-gamma-spectrometry, respectively. Averagen=30 radioactivity concentrations of 226Ra (68.4 Bq kg-1), 232Th (85.7 Bq kg-1), and 40K (918 Bq kg-1) were 2.0-2.3-fold higher, which show elevated results compared to the corresponding world mean values. Additionally, mean-REE abundances were 1.02-1.38-times higher than those of crustal origin. Elevated (relative to earth-crust) ratios of Th/U (=3.95 ± 1.84) and 232Th/40K and statistical demonstrations invoke Th-dominant heavy minerals, indicating the role of kaolinite clay mineral abundance/granitic presence. However, Th/Yb, La/V, Hf/Sc, and Th/Sc ratios reveal the presence of felsic abundances, hydrodynamic sorting, and recycling of sedimentary minerals. Geo-environmental indices demonstrated the enrichment of chemical elements in heavy minerals, whereas radiological indices presented ionizing radiation concerns, e.g., the average absorbed-gamma-dose rate (123.1 nGy h-1) was 2.24-fold higher compared to the threshold value which might cause chronic health impacts depending on the degree of exposure. The mean excess lifetime cancer risk value for carcinogen exposure was 5.29 × 10-4 S v-1, which is ∼2-times greater than the suggested threshold. Therefore, plausible extraction of heavy minerals and using residues as building materials can alleviate the two-reconciling problems: (1) radiological risk management and (2) fluvial navigability.


Assuntos
Metais Terras Raras , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Metais Terras Raras/análise , Radioisótopos/análise , Minerais/análise , Medição de Risco , Poluentes Radioativos do Solo/análise
2.
Int J Biol Macromol ; 258(Pt 2): 129072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163500

RESUMO

Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Humanos , Metais Terras Raras/análise , Ecotoxicologia , Inflamação
3.
Environ Pollut ; 343: 123163, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104763

RESUMO

Prenatal rare earth elements (REEs) exposure is linked to unfavorable health consequences. Epidemiologic research on repeated measurements of REEs during gestation correlated with fetal growth is exiguous. Until now, few studies have characterized exposure characteristics of REEs in pregnant women. We aimed to ascertain the characteristics and predictors of REEs exposure over three trimesters among pregnant women and examine the possible effects of prenatal REEs exposure on size at birth. Urinary REEs concentrations exhibited considerable within-subject variation with intraclass correlation coefficients ranging from 0.16 to 0.58. Maternal age, household income, gestational weight gain, passive smoking during pregnancy, parity, and neonatal gender were associated with maternal urinary REEs concentrations. Elevated maternal urinary holmium and thulium concentrations in the 3rd trimester were significantly related to reductions in birth weight. Weighted quantile sum (WQS) regression model identified that urinary REEs mixture in the 3rd trimester were negatively related to birth weight (WQSREEs ß = -26.22; 95% confidence interval [CI]: -47.62, -4.82), with holmium (40%) and thulium (24%) receiving the highest weights. Male infants received the most weight (>50%) related to decreased birth weight. This study revealed a significant association between individual and mixture REE exposure in late pregnancy with a reduction in birth weight.


Assuntos
Hólmio , Metais Terras Raras , Recém-Nascido , Lactente , Gravidez , Humanos , Masculino , Feminino , Peso ao Nascer , Hólmio/farmacologia , Túlio/farmacologia , Metais Terras Raras/análise , Desenvolvimento Fetal , Exposição Materna
4.
Water Res ; 244: 120486, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633210

RESUMO

While rare earth elements (REEs) play key roles in many modern technologies, the selectivity of recovering of REEs from mining wastewater remains a critical problem. In this study, iron nanoparticles (FeNPs) synthesized from euphorbia cochinchinensis extracts were successfully used for selective recovery of REEs from real mining wastewater with removal efficiencies of 89.4% for Y(III), 79.8% for Ce(III) and only 6.15% for Zn(Ⅱ). FTIR and XPS analysis suggested that the high selective removal efficiency of Y(III) and Ce(III) relative to Zn(Ⅱ) on FeNPs was due to a combination of selective REEs adsorption via complexing with O or N, ion exchange with H+ present in functional groups contained within the capping layer and electrostatic interactions. Adsorptions of Y(III) and Ce(III) on FeNPs conformed to pseudo second-order kinetics and the Langmuir isotherm model with maximum adsorption capacities of 5.10 and 0.695 mg∙g-1, respectively. The desorption efficiencies of Y(III) and Ce(III) were, respectively, 95.0 and 97.9% in 0.05 M acetic acid, where desorption involved competitive ion exchange between Y(III), Ce(III) and Zn(Ⅱ) with H+ contained in acetic acid and intraparticle diffusion. After four consecutive adsorption-desorption cycles, adsorption efficiencies for Y(III) and Ce(III) remained relatively high at 52.7% and 50.1%, respectively, while desorption efficiencies of Y(III) and Ce(III) were > 80.0% and 95.0%, respectively. Overall, excellent reusability suggests that FeNPs can practically serve as a potential high-quality selectivity material for recovering REEs from mining wastewaters.


Assuntos
Metais Terras Raras , Nanopartículas , Águas Residuárias , Ferro/análise , Metais Terras Raras/análise , Ácido Acético , Mineração , Adsorção
5.
Front Public Health ; 11: 1058013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181707

RESUMO

Objective: The current research aimed to examine how dietary intake and rare earth elements may affect the development of tongue cancer. Methods: The serum levels of 10 rare earth elements (REEs) in 171 cases and 171 healthy matched controls were measured by inductively coupled plasma mass spectrometry (ICP-MS). The conditional logistic regression was used to examine the relationship between dietary intake, serum levels of 10 REEs, and tongue cancer. Mediation effect and multiplicative interaction analysis were then performed to estimate the potential contribution of REEs in dietary intake associated with tongue cancer. Results: Compared with the control group, patients with tongue cancer consumed significantly less fish, seafood, fruit, green leafy vegetables, and non-green leafy vegetables, with higher serum praseodymium (Pr), dysprosium (Dy), and lanthanum (La) levels, and lower serum cerium (Ce) and scandium (Sc) levels. The interaction effect was observed between some REEs and food categories. Green vegetables' impact on the risk of tongue cancer is partially attributed to the La and Thorium (Th) elements (P < 0.05, the mediated proportion were 14.933% and 25.280%, respectively). The effect of non-green leafy vegetables for tongue cancer mediated via Pr, Dy, and Th (P < 0.05, the mediated proportion were 0.408%, 12.010%, and 8.969%, respectively), and the Sc components in seafood (P < 0.05, the mediated proportion was 26.120%) is partly responsible for their influence on the risk of tongue cancer. Conclusion: The correlation between REEs and dietary intakes for tongue cancer is compact but intricate. Some REEs interact with food intake to influence tongue cancer, while others act as a mediator.


Assuntos
Metais Terras Raras , Neoplasias da Língua , Animais , Análise de Mediação , Metais Terras Raras/análise , Metais Terras Raras/química , China , Ingestão de Alimentos
6.
Sci Total Environ ; 856(Pt 2): 159141, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191706

RESUMO

Rare earth elements (REEs) can cause neoplasms, reduce bone density, affect children's intelligence, etc., and diet is an important way for the human body to absorb REEs. With the increasing use of REEs, the impact on human health is becoming more and more important. So, we used a probabilistic assessment method with Monte Carlo simulation to evaluate the dietary intake of REEs by residents of a large light rare earth mining area in Shandong Province. 16 REEs in 447 samples (including wheat, maize, dry beans, vegetables, fruits and eggs) were detected. The mean value of total REEs for all samples was 286.96 µg/kg, and of light rare earth elements (LREEs) was 270.18 µg/kg. Among of LREEs, Ce, La, Nd and Pr were dominant. The REEs content of different food categories showed that wheat, leafy vegetables and allium vegetables had higher content of REEs, melons vegetables, root vegetables, fruits and eggs had the lowest content. The mean dietary intake of rare earth oxides for the whole population was 4.20 µg/kg bw/d, wheat and vegetables (leafy vegetables, allium vegetables and root vegetables) were the main sources of REEs. Dietary intake estimates of REEs by age and gender did not exceed the acceptable daily intake which means implying no impact on human health.


Assuntos
Metais Terras Raras , Criança , Humanos , Metais Terras Raras/análise , Mineração , Verduras , Nível de Efeito Adverso não Observado , Ingestão de Alimentos , China
7.
Artigo em Inglês | MEDLINE | ID: mdl-36429823

RESUMO

The mining and leaching processes of rare-earth mines can include the entry of potentially toxic elements (PTEs) into the environment, causing ecological risks and endangering human health. However, the identification of ecological risks and sources of PTEs in rare-earth mining areas is less comprehensive. Hence, we determine the PTE (Co, Cr, Cu, Mn, Ni, Pb, Zn, V) content in soils around rare-earth mining areas in the south and analyze the ecological health risks, distribution characteristics, and sources of PTEs in the study area using various indices and models. The results showed that the average concentrations of Co, Mn, Ni, Pb and Zn were higher than the soil background values, with a maximum of 1.62 times. The spatial distribution of PTEs was not homogeneous and the hot spots were mostly located near roads and mining areas. The ecological risk index and the non-carcinogenic index showed that the contribution was mainly from Co, Pb, and Cr, which accounted for more than 90%. Correlation analysis and PMF models indicated that eight PTEs were positively correlated, and rare-earth mining operations (concentration of 22.85%) may have caused Pb and Cu enrichment in soils in the area, while other anthropogenic sources of pollution were industrial emissions and agricultural pollution. The results of the study can provide a scientific basis for environmental-pollution assessment and prevention in rare-earth mining cities.


Assuntos
Metais Pesados , Metais Terras Raras , Poluentes do Solo , Humanos , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Medição de Risco , Metais Terras Raras/análise
8.
Sci Total Environ ; 853: 158635, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087673

RESUMO

Potentially toxic elements (PTEs) can be released during mining operations and ore processing. The pollution and health risk related to PTEs in total suspended particulates (TSPs) around the largest polymetallic rare earth mining area (Bayan Obo) and smelting area (Baotou) in Inner Mongolia, China, were evaluated. PTEs in the hair of the elderly living in these two areas and a reference area (Hohhot) were also examined. Relationships between PTEs in TSPs and hair with categorical factors (location, gender, etc.) were also modeled. Multivariate statistical analyses were carried out to analyze the possible sources of the PTEs in TSPs. The bubble maps of the concentrations of PTEs indicated that high concentrations of PTEs were near the industrial area where smelting plants and power plants were located. In addition, health risks were assessed for adults in the mining and smelting area. The carcinogenic risk of Cr was high for residents in the study areas. Also, the residents were exposed to a non-carcinogenic risk of Ni. Significant mean value differences were observed between PTEs in the hair of the elderly in Baotou and Hohhot. Results of the linear regression model indicated that around 31 % of the Pb in hair could be explained by the linear regression model, it could be affected by Ni and Zn in TSPs, but location, gender, and sampling time showed no significant contribution. Age was not significantly associated with the PTEs levels in hair in Baotou and Bayan Obo. The results provide important scientific evidence for a better understanding of the effects of PTEs in TSPs in polymetallic ore mining and smelting areas.


Assuntos
Metais Pesados , Metais Terras Raras , Poluentes do Solo , Adulto , Humanos , Idoso , Monitoramento Biológico , Chumbo/análise , Monitoramento Ambiental/métodos , Mineração , Metais Terras Raras/análise , Poeira/análise , China , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , Solo
9.
Chemosphere ; 307(Pt 2): 135907, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35932924

RESUMO

Previous studies have addressed the occurrence of Acid Rock Drainage (ARD) affecting La Silva stream due to the generation of large dumps of Middle Ordovician black shales during the construction of a highway close to El Bierzo (León, Spain). This ARD was characterized by sulphated acid waters with high concentration of heavy metals and anomalies in dissolved thorium (Th) and uranium (U). In the present study, we analyse in depth black shales and water, streambed sediments and precipitates of La Silva stream and its tributaries using different petrographic, mineralogical and geochemical approaches. Black shales, with average Th and U contents of 20 and 3 µg/g respectively contain disseminated detritic micro-grains of high weathering-resistant minerals, such as monazite and xenotime, that present smaller amounts of yttrium and rare earth elements (REY) and other elements as Ca, U, Th, Si and F. Results of the affected waters by ARD show an enrichment in dissolved Th, U and REY of several orders of magnitude with respect to natural waters. Sampled precipitates were mainly schwertmannite (Fe8O8(OH)8-2x (SO4)xO16•nH2O) and goethite (α-Fe3+O(OH)) that showed an enrichment of Th (up to 798 µg/g) and REY, due to the presence of dissolved anionic species (e.g. [Formula: see text] , [Formula: see text] ) that enables their adsorption. Furthermore, these black shales show a clear enrichment in REE (Rare Earth Elements) with respect to NASC (North American Shales Composite) normalized REE patterns. Likewise, normalized REE patterns of stream waters and precipitates clearly show convex curvatures in middle-REE (MREE) with respect to light- and something less than heavy-REE, indicating the trend towards MREE enrichment. These findings are essential to evaluate the impact of ARD of Mid Ordovician shales in the surrounding environment, and to start considering these site as potential source of REE and critical raw materials, activating a Circular Economy.


Assuntos
Metais Terras Raras , Urânio , Poluentes Químicos da Água , Ácidos/química , Monitoramento Ambiental/métodos , Compostos de Ferro , Metais Terras Raras/análise , Minerais/análise , Tório/análise , Urânio/análise , Água/análise , Poluentes Químicos da Água/análise , Ítrio/análise
10.
Environ Pollut ; 309: 119801, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863702

RESUMO

Our study investigated occupational exposure to rare earth elements (REEs) in a major REE processing plant from North China by assessing both external exposure and internal exposure in the workers. An exposure group, including 50 workers in the processing plant, and a control group, including 50 workers from a liquor factory located 150 km away from the exposure group, were recruited in the study. Portable air sampler was employed to accurately measure individual exposure to the external environment, and the data demonstrating significantly higher contamination in the REE processing plant compared with the control group (i.e., 87.5 versus 0.49 µg/m3 of ΣREEs). Blood concentrations were also significantly higher in the exposure group (3.47 versus 2.24 µg/L of ΣREEs). However, the compositional profiles of REEs resembled between the exposure and control group in blood or air particles, indicating the influence of mining/processing activities on the surrounding regions. External exposure in the occupational environment appeared to significantly influence internal REE exposure in the REE processing workers. Some other sociodemographic and occupational factors, including the residence time and the type of work, could also influence occupational exposure to selected REEs. Our data clearly demonstrated the highly elevated REE contamination in both working environment and human bodies compared with the control subjects, raising the critical need for better assessing the health risks from occupational REE exposure and efficient management for occupational hazards.


Assuntos
Metais Terras Raras , Exposição Ocupacional , China , Humanos , Metais Terras Raras/análise , Mineração
11.
Front Public Health ; 10: 905690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646760

RESUMO

As an important rare earth element (REE) extensively applied to industry, agriculture, and medicine, lanthanum (La) has attracted a host of health concerns. This study aimed to explore the relationship between La exposure and the risk of developing oral cancer through a case-control study with a large sample size. Serum La levels of 430 oral cancer patients and 1,118 healthy controls were detected by inductively coupled plasma mass spectrometry (ICP-MS). The association of La level with the risk of oral cancer was assessed in two ways: (1) as a continuous scale based on restricted cubic splines (RCS); (2) as a priori defined centile categories using multivariate logistic regression model, based on propensity score matching (PSM) and inverse probability of treatment weighting (IPTW). The RCS revealed a non-linear U-shaped relationship between serum La and oral cancer risk. Serum La deficiency or excess was associated with an increased risk of oral cancer. When the La level was analyzed as a categorical variable, a similar U-shaped association was observed. Of note, compared to those with La concentrations of 0.243-0.341 µg/L (reference quantiles, 41st-60th), the risk was increased in those with the lower or higher quantiles (0.132-0.242 µg/L vs. 0.243-0.341 µg/L: OR = 1.80, 95%CI: 1.07-3.02; 0.342-0.497 µg/L vs. 0.243-0.341 µg/L: OR = 2.30, 95%CI: 1.38-3.84). The results were generally consistent with the PSM and IPTW analyses. This preliminary study provides strong evidence that there was a U-shaped relationship between serum La levels and oral cancer risk. Much additional work is warranted to confirm our findings.


Assuntos
Metais Terras Raras , Neoplasias Bucais , Estudos de Casos e Controles , Humanos , Lantânio/análise , Metais Terras Raras/análise , Neoplasias Bucais/epidemiologia , Pontuação de Propensão
12.
Environ Sci Pollut Res Int ; 29(55): 83417-83425, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35763145

RESUMO

The Brazilian coast is rich in monazite which is found in beach sand deposits. In this study, the composition of the monazite sands from beaches of State of Espírito Santo, Brazil, was investigated. The concentrations of rare earth elements (REEs), Th, and U were determined by inductively coupled plasma mass spectrometry (ICP-MS). In the studied region, the mean concentration of investigated elements increased in the following order: Tm < Yb < Ho < Lu < Eu < Er < Tb < Dy < U < Y < Th < Gd < Sm < Pr < Nd < La < Ce. The sampling sites were classified into three clusters and discriminated by the concentrations of REEs, Th, and U found. In general, the radiological risk indices were higher than the established limits, and the risk of developing cancer was estimated to be higher than the world average.


Assuntos
Metais Terras Raras , Areia , Metais Terras Raras/análise , Medição de Risco , Brasil
13.
Environ Sci Pollut Res Int ; 29(38): 57357-57375, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349070

RESUMO

This study of a downstream segment (Brahmaputra, Bangladesh) of one of the longest transboundary (China-India-Bangladesh) Himalayan rivers reveals elevated radioactivity compared to other freshwater basins across the world. Naturally occurring radioactive nuclides (226Ra, 232Th, and 40K) and metal contents (transition metals, Fe, Ti, Sc, and V; rare earth elements, La, Ce, Eu, Sm, Dy, Yb, and Lu; high field strength elements, Ta and Hf; and actinides, Th and U) in thirty sediment samples were measured by HPGe γ-spectrophotometry and research reactor-based neutron activation analysis, respectively. We systematically investigated the mechanism of the deposition of higher radioactivity concentrations and rare earth elements (REEs) associated with heavy minerals (HMs) and photomicrograph-based mineralogical analysis. The results show that total REEs (∑REE) and Ta, Hf, U, and Th are generally 1.5- to 3.0-fold elevated compared to crustal values associated with -δEu and -δCe anomalies, suggesting a felsic source provenance. The enrichment of light REEs (×1.5 upper continental crust (UCC)) and Th (×1.9 UCC), besides Th/U (=7.74 ± 2.35) and 232Th/40K ratios, along with the micrographic and statistical approaches, revealed the elevated presence of HMs. Fluvial suspended sedimentary transportation (from upstream) followed by mineralogical recycling and sorting enriched the HM depositions in this basin. Bivariate plots, including La/Th-Hf, La/Th-Th/Yb, and La/V-Th/Yb, revealed significant contributions of felsic source rock compared to mafic sources. The assessment of radiological hazards demonstrates ionizing-radiation-associated health risks to the local residents and people inhabiting houses made from Brahmaputra River sediments (as construction material).


Assuntos
Metais Terras Raras , Exposição à Radiação , Radioatividade , Bangladesh , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Metais Terras Raras/análise , Minerais/análise , Exposição à Radiação/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-35010818

RESUMO

BACKGROUND: Rare earth elements (REEs) are emerging contaminants. Previous studies reported the association between REEs and active smoking, but little is known about the effects of passive smoking on this condition. In China, female passive smoking is widespread, particularly in rural areas. OBJECTIVE: This study aimed to estimate the relationship between REEs accumulation and passive smoking among rural housewives. METHODS: We recruited 385 subjects in Shanxi Province of northern China, of whom 117 housewives were exposed to passive smoking, and 268 were not. We analyzed 15 REEs in the hair of housewives with ICP-MS, including lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium. RESULTS: The results indicated higher levels of 14 REEs except for Sm in both the univariate and adjusted models among the housewives exposed to passive smoking. The increasing linear trend of adjusted odds ratios of 15 REEs supported their association. The Bayesian kernel machine regression (BKMR) models showed that 15 REEs had a significant overall effect, and Eu had a single-exposure effect with passive smoking. CONCLUSION: We concluded that passive smoking might be associated with increased exposure to REEs among rural housewives.


Assuntos
Metais Terras Raras , Poluição por Fumaça de Tabaco , Teorema de Bayes , China/epidemiologia , Érbio , Feminino , Humanos , Metais Terras Raras/análise , Praseodímio , Térbio
15.
Sci Total Environ ; 806(Pt 2): 151191, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710416

RESUMO

Rare earth elements (REEs) are a grouping of elements that encompasses lanthanides, yttrium and scandium due to their similar chemical properties and occurrence in ore deposits. Over the past few decades, economic interest in REEs has increased due to their use in several types of industries such as high-tech, medicine and agriculture. Extraction of REEs has been followed, in general, by incorrect disposal of tailing and waste, creating hazardous conditions in several countries. However, the magnitude of the possible impacts on ecosystem and human health are relatively unknown, especially in tropical systems. Thus, the objectives of this study were to assess the geochemical mobility and the bioaccessibility of REEs based on a series of chemical extractions and in vitro essay. We also tested two promising simple protocols (0.01 mol L-1 CaCl2 and 0.43 mol L-1 HNO3) for measuring REE bioaccessible fractions through a single extraction. Our findings show that the bioavailable fractions represent less than 20% of the ΣREEs fraction in all soil samples examine. Similarly, the oral bioaccessibility obtained by two in vitro methods (Gastric protocol and Gastric-Intestinal protocol) and by the single extraction tests represented less than 20% of the ΣREE contents. The non-carcinogenic risks and the carcinogenic risks associated to REEs oral exposure were low for children and adults. The extractions with 0.01 mol L-1 CaCl2 showed great potential as a method for measuring the REEs bioaccessible fraction.


Assuntos
Metais Terras Raras , Poluentes do Solo , Criança , Ecossistema , Humanos , Metais Terras Raras/análise , Medição de Risco , Solo , Poluentes do Solo/análise
16.
Chemosphere ; 277: 130131, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384166

RESUMO

The scavenging of soluble metals by iron (Fe) and aluminium (Al) oxyhydroxides is a natural process that occurs in acid mine drainage (AMD). This phenomenon is relevant to the immobilization, transport, and recovery of important natural resources such as rare earth elements (REE) and uranium (U). Furthermore, understanding the players and the reactions that govern the scavenging of REE and U by Fe and Al oxyhydroxides in aqueous systems is fundamental for natural and engineering sciences and for environmental management. In this scenario, the current work investigated the role of iron in the co-precipitation of REE and U when treating effluents by pH neutralization in an AMD system located in Brazil. The research employed water sampling, co-precipitation batch experiments, sequential extraction, X-ray diffraction and 57Fe Mössbauer spectroscopy. The results revealed that the presence and the amount of Fe in the initial solution can influence the REE removal efficiency positively. The effect of the addition of Fe over the REE removal efficiency was irrelevant when the pH of the AMD was raised to values equal to 7-8. The scavenging of U was not influenced by the addition of Fe to the AMD. The sequential extraction results showed that precipitates containing higher amounts of Fe tend to be less labile. The 57Fe Mössbauer spectra revealed that the REE can occupy iron sites in the structure of the amorphous precipitates. The findings of the current study can be extrapolated to other AMD systems and contribute to the development of novel REE recovery and hydrometallurgical techniques.


Assuntos
Metais Terras Raras , Urânio , Poluentes Químicos da Água , Alumínio , Ferro , Metais Terras Raras/análise , Mineração , Poluentes Químicos da Água/análise
17.
J Environ Radioact ; 232: 106565, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714078

RESUMO

The Kanyakumari coastal area in the southernmost part of Tamil Nadu, India is a well-known natural high background radiation area due to the abundance of monazite in beach placer deposits. In the present study, the concentrations of major oxides, rare earth elements (REEs), Th and U were measured to understand geochemical characteristics of these monazite sands. Based on the ambient dose rate, 23 locations covering an area of about 60 km along the coast were selected for sample collection. The concentrations of U and Th ranged from 1.1 to 737.8 µg g-1 and 25.2-12250.6 µg g-1, respectively. The Th/U ratio ranged from 2.2 to 61.6, which clearly indicated that Th was the dominant contributing radionuclide to the enhanced natural radioactivity in this coastal region. The chondrite-normalized REEs pattern of the placer deposits showed enrichment in light REEs and depletion in heavy REEs with a negative Eu anomaly that indicated the monazite sands were derived from granite, charnockite, and granitoid rocks from the Nagercoil and the Trivandrum Blocks of the Southern Granulite Terrain.


Assuntos
Metais Terras Raras , Monitoramento de Radiação , Urânio , Radiação de Fundo , Índia , Metais Terras Raras/análise , Areia , Tório/análise , Urânio/análise
18.
Int J Environ Health Res ; 31(7): 741-754, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31674203

RESUMO

Inorganic elements have been associated with brain tumours for long. The blood concentration of 47 elements was assessed by ICP-MS in 26 brain tumour patients and 21 healthy subjects from Bucharest (Romania). All 47 elements were detected in the brain tumour tissue, and 22 were detected in > 80% of samples; this implies that these elements can cross the blood-brain barrier. Median blood levels of cadmium, lead, and nickel were higher than the reference values (1.14, 53.3, and 2.53 ng/mL). Gadolinium and tantalum showed significantly higher concentrations among cases. We observed considerable differences and different profiles of the presence of inorganic elements between the tumour and non-tumour brain tissue and between tissue from the primary tumour and tissue from brain metastasis. Our data suggest that similar to heavy metals, other elements - commonly used in high tech devices and rare earth elements - can also influence brain tumour.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Metais Pesados/análise , Metais Terras Raras/análise , Adulto , Idoso , Monitoramento Biológico , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Meningioma/metabolismo , Meningioma/patologia , Metais Pesados/sangue , Metais Pesados/metabolismo , Metais Terras Raras/sangue , Metais Terras Raras/metabolismo , Pessoa de Meia-Idade , Romênia
19.
Chemosphere ; 263: 127984, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32854010

RESUMO

Rare earth elements (REEs) are essential in high technology industries and have great economic value. The monitoring of REEs concentrations in rocks from oil well drill cuttings is critical to avoid environmental contamination and evaluate new sources of these elements. However, information is scarce about the REEs concentrations in drill cuttings. In this work, the concentration of REEs in drill cuttings from oil and gas exploration wells in ultradeep coastal water of Brazilian were investigated at different depths. The drill cutting samples were submitted to microwave-assisted acid digestion prior to the determination of concentration by ICP-MS, using Rh as internal standard for calibration. The limits of quantification (LoQ) ranged from 3.3 µg kg-1 for Ho to 198 µg kg-1 for Sm. The accuracy was evaluated by analyzing certified reference materials for rocks. The obtained REEs concentrations agreed with the certified values, reaching 83%-105% agreement. The drill cutting depth profile analysis indicates Ce, La, Nd, Sm, and Eu concentrations up to mg kg-1. The REEs concentrations obtained in drill cutting depth profile was analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) identified tendency and similarity between drill cutting samples. Three groups were formed according to the composition of the REEs. In addition, the concentration of these chemicals elements varied at different depths. The analysis of drill cuttings revealed REEs concentrations up to the mg per kg-range (ppm), potentially making this disposable material an alternative source for REEs extraction, and adding value to this material.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Brasil , Mineração , Campos de Petróleo e Gás
20.
Sci Total Environ ; 761: 144123, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360126

RESUMO

Previous studies have shown that an effective damage detection method for model rats from macro individual to micro cellular, was applied to assess the groundwater quality from rare earth metals tailings seepage. To determine whether it is universal method for measuring the toxicological damage caused by contaminated water around other mining areas to organisms at the organ-tissue-cell-chromosome-gene level. In this study, a rare earth mining area in North China was used as research base. Firstly, the core pollution factors in surface water and groundwater from five different sites were analyzed. Then, the degree of toxicological damage to Sprague-Dawley (SD) rats caused by contaminated water were systematically assessed using biological methods. Finally, the possible molecular mechanism of toxicological damage was further discussed. The synthesis results showed that the main pollution factors were some metal elements (Mn, Zn, Co, Ni) and rare earth elements (Sc, Nb, La, Ce, Pr, Dy and Y), which might cause significant DNA genetic damage to SD rats. Further, differential gene expression profile showed that DNA damage-inducible genes (Gadd45g and Ddit4), immunity-related genes (Mpo, Slpi and Elane) and two cancer-related genes (Mmp8 and Ltf) were used as a new prognostic and predictive biomarker for biosafety assessment. Therefore, this study provides a possible molecular mechanism for the toxicological damage, and also it provides a universal method to scientifically and effectively evaluate the water pollution risk for other mining areas.


Assuntos
Água Subterrânea , Metais Terras Raras , Animais , Biologia , China , Monitoramento Ambiental , Metais Terras Raras/análise , Metais Terras Raras/toxicidade , Mineração , Ratos , Ratos Sprague-Dawley , Água , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA