Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.277
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
2.
Mol Microbiol ; 121(5): 1063-1078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558112

RESUMO

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.


Assuntos
Metaloendopeptidases , Proteínas de Protozoários , Fatores de Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Metaloendopeptidases/metabolismo , Metaloendopeptidases/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Macrófagos/parasitologia , Macrófagos/metabolismo , Animais , Leishmania/metabolismo , Leishmania/genética , Transporte Proteico , Sistemas CRISPR-Cas , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética
3.
Biol Res ; 57(1): 10, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494498

RESUMO

BACKGROUND: The senescence of renal tubular epithelial cells (RTECs) is crucial in the progression of diabetic kidney disease (DKD). Accumulating evidence suggests a close association between insufficient mitophagy and RTEC senescence. Yeast mitochondrial escape 1-like 1 (YME1L), an inner mitochondrial membrane metalloprotease, maintains mitochondrial integrity. Its functions in DKD remain unclear. Here, we investigated whether YME1L can prevent the progression of DKD by regulating mitophagy and cellular senescence. METHODS: We analyzed YME1L expression in renal tubules of DKD patients and mice, explored transcriptomic changes associated with YME1L overexpression in RTECs, and assessed its impact on RTEC senescence and renal dysfunction using an HFD/STZ-induced DKD mouse model. Tubule-specific overexpression of YME1L was achieved through the use of recombinant adeno-associated virus 2/9 (rAAV 2/9). We conducted both in vivo and in vitro experiments to evaluate the effects of YME1L overexpression on mitophagy and mitochondrial function. Furthermore, we performed LC-MS/MS analysis to identify potential protein interactions involving YME1L and elucidate the underlying mechanisms. RESULTS: Our findings revealed a significant decrease in YME1L expression in the renal tubules of DKD patients and mice. However, tubule-specific overexpression of YME1L significantly alleviated RTEC senescence and renal dysfunction in the HFD/STZ-induced DKD mouse model. Moreover, YME1L overexpression exhibited positive effects on enhancing mitophagy and improving mitochondrial function both in vivo and in vitro. Mechanistically, our LC-MS/MS analysis uncovered a crucial mitophagy receptor, BCL2-like 13 (BCL2L13), as an interacting partner of YME1L. Furthermore, YME1L was found to promote the phosphorylation of BCL2L13, highlighting its role in regulating mitophagy. CONCLUSIONS: This study provides compelling evidence that YME1L plays a critical role in protecting RTECs from cellular senescence and impeding the progression of DKD. Overexpression of YME1L demonstrated significant therapeutic potential by ameliorating both RTEC senescence and renal dysfunction in the DKD mice. Moreover, our findings indicate that YME1L enhances mitophagy and improves mitochondrial function, potentially through its interaction with BCL2L13 and subsequent phosphorylation. These novel insights into the protective mechanisms of YME1L offer a promising strategy for developing therapies targeting DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Mitofagia/fisiologia , Saccharomyces cerevisiae , Cromatografia Líquida , Espectrometria de Massas em Tandem , Células Epiteliais/metabolismo , Modelos Animais de Doenças , Senescência Celular , Diabetes Mellitus/metabolismo , Metaloendopeptidases/metabolismo , Metaloendopeptidases/farmacologia
4.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38096617

RESUMO

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Assuntos
Células-Tronco Hematopoéticas , Metaloendopeptidases , Células-Tronco Hematopoéticas/metabolismo , Metaloendopeptidases/metabolismo , Hematopoese/fisiologia , Regulação para Cima , Diferenciação Celular/genética
5.
Mol Cancer Ther ; 23(2): 159-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940144

RESUMO

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.


Assuntos
Aminopeptidases , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Células Endoteliais/metabolismo , Metaloendopeptidases/metabolismo , Inibidores Enzimáticos , Inibidores da Angiogênese/farmacologia , Neoplasias Renais/tratamento farmacológico
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069319

RESUMO

The filamentation temperature-sensitive H (FtsH) gene family is critical in regulating plant chloroplast development and photosynthesis. It plays a vital role in plant growth, development, and stress response. Although FtsH genes have been identified in a wide range of plants, there is no detailed study of the FtsH gene family in soybean (Glycine max). Here, we identified 34 GmFtsH genes, which could be categorized into eight groups, and GmFtsH genes in the same group had similar structures and conserved protein motifs. We also performed intraspecific and interspecific collinearity analysis and found that the GmFtsH family has large-scale gene duplication and is more closely related to Arabidopsis thaliana. Cis-acting elements analysis in the promoter region of the GmFtsH genes revealed that most genes contain developmental and stress response elements. Expression patterns based on transcriptome data and real-time reverse transcription quantitative PCR (qRT-PCR) showed that most of the GmFtsH genes were expressed at the highest levels in leaves. Then, GO enrichment analysis indicated that GmFtsH genes might function as a protein hydrolase. In addition, the GmFtsH13 protein was confirmed to be localized in chloroplasts by a transient expression experiment in tobacco. Taken together, the results of this study lay the foundation for the functional determination of GmFtsH genes and help researchers further understand the regulatory network in soybean leaf development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glycine max/genética , Genoma de Planta , Sequência de Aminoácidos , Temperatura , Família Multigênica , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaloendopeptidases/metabolismo , Proteínas de Arabidopsis/genética
7.
Nucleus ; 14(1): 2288476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050983

RESUMO

Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.


Assuntos
Lipodistrofia , Progéria , Criança , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação , Lipodistrofia/metabolismo , Fibroblastos/metabolismo , Transferases/genética , Transferases/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Membrana/metabolismo
8.
J Chem Neuroanat ; 133: 102345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778734

RESUMO

Thimet oligopeptides (THOP 1) is a metal-dependent peptidase involved in the metabolism of neuropeptides and the presentation of peptides via MHC-1. It has been shown to play a role in the regulation of protein-protein interactions and the metabolism of intracellular peptides. THOP 1 is associated with important biological processes such as metabolism and neurodegenerative diseases, among others. The objective of this study is to elucidate the distribution of THOP 1 in the Bufo marinus brain. The analysis of THOP 1 amino acid sequences indicates that they have been conserved throughout evolution, with significant homology observed across various phyla. When comparing amphibians with other species, more than 70% identity can be identified. Immunohistochemistry analysis of the toad's brain has demonstrated that the enzyme has a ubiquitous distribution, consistent with previous findings in mammals. THOP 1 can be found in important areas of the brain, such as bulb, thalamic nuclei, striatum, hypothalamus, and among others. Nonetheless, THOP 1 is consistently localized within the nucleus, a pattern also observed in the rat brain. Therefore, based on these results, the toad appears to be an excellent model for studying the general biology of THOP 1, given the substantial homology of this enzyme with mammals and its similarity in distribution within the brain.


Assuntos
Bufo marinus , Metaloendopeptidases , Animais , Ratos , Bufo marinus/metabolismo , Peptídeos/metabolismo , Núcleos Talâmicos/enzimologia , Metaloendopeptidases/metabolismo , Encéfalo/enzimologia
9.
Nucleus ; 14(1): 2270345, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37885131

RESUMO

As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.


Assuntos
Lamina Tipo A , Progéria , Humanos , Animais , Camundongos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Promoção da Saúde , Progéria/genética , Progéria/metabolismo , Envelhecimento/genética , Proteínas de Membrana/metabolismo
10.
Clin Genet ; 104(4): 491-496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37270786

RESUMO

Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process.


Assuntos
Mutação da Fase de Leitura , Metaloendopeptidases , Humanos , Mutação da Fase de Leitura/genética , Códon de Iniciação/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Códon , Proteínas de Membrana/genética
11.
Cell Rep ; 42(4): 112332, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002921

RESUMO

The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.


Assuntos
Metaloendopeptidases , Peptídeo Hidrolases , Humanos , DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo
12.
Int J Biol Sci ; 19(6): 1778-1790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063426

RESUMO

The expression and biological function of the mitochondrial inner membrane protease YME1L (YME1 Like 1 ATPase) in NSCLC are tested here. Bioinformatical analyses and results from local human tissues show that YME1L expression is elevated in NSCLC tissues. YME1L upregulation was observed in primary and immortalized NSCLC cells. In NSCLC cells, shRNA-mediated silence of YME1L or dCas9/sgRNA-induced knockout (KO) of YME1L robustly suppressed cell growth and migration, and provoking apoptosis. YME1L shRNA/KO resulted in mitochondrial dysfunctions in NSCLC cells, leading to mitochondrial depolarization, ROS accumulation and ATP depletion. Conversely, ectopic YME1L overexpression augmented NSCLC cell proliferation and motility. Akt-S6K1 phosphorylation was reduced after YME1L shRNA/KO in primary NSCLC cells, but augmented after YME1L overexpression. Importantly, YME1L KO-caused anti-NSCLC cell activity was attenuated by a constitutively-activate Akt1 (S473D) construct. In vivo, subcutaneous NSCLC xenograft growth was remarkably slowed following intratumoral YME1L shRNA AAV injection in nude mice. YME1L knockdown, Akt-mTOR inactivation and ATP reduction were detected in YME1L-silenced NSCLC xenografts. Taken together, overexpressed YME1L in NSCLC exerts pro-tumorigenic function.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética
13.
ACS Appl Bio Mater ; 6(4): 1460-1470, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921248

RESUMO

Skin wounds may cause severe financial and social burden due to the difficulties in wound healing. Original inert dressings cannot meet multiple needs in the process of wound healing. Therefore, the development of materials to accelerate healing progress is essential and urgent. In the previous study, we found that the homogeneously synthesized hydroxybutyl chitosan (HBCS) had an effective performance in promoting wound healing. Proteomic analysis of the same specimen suggested that matrix metalloproteinase 23 (MMP23) may play a key role in HBCS expediting the progress of wound healing. In this work, we aim to reveal the underlying mechanism of MMP23 in the dynamic process of cutaneous proliferation and repair period. In order to regulate the expression level of MMP23 in the local wound area, we leaded in adeno-associated virus (AAV) to specifically decreased expression quantity of MMP23 in rat skin. In contrast to the negative control groups, we found that the wound closed faster and the collagen fibers and neovascularization were significantly increased in AAV groups. These findings highlighted that MMP23 was involved in wound healing after traumatic injury, and managing the expression of MMP23 could be a potential intervention target to accelerate wound healing.


Assuntos
Quitosana , Cicatrização , Animais , Ratos , Quitosana/farmacologia , Proteômica , Pele , Metaloendopeptidases/metabolismo
14.
Br J Cancer ; 128(11): 1991-1999, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36991255

RESUMO

BACKGROUND: Prostate cancer is the most common cancer in men in the developed world, with most deaths caused by advanced and metastatic disease which has no curative options. Here, we identified Mbtps2 alteration to be associated with metastatic disease in an unbiased in vivo screen and demonstrated its regulation of fatty acid and cholesterol metabolism. METHODS: The Sleeping Beauty transposon system was used to randomly alter gene expression in the PtenNull murine prostate. MBTPS2 was knocked down by siRNA in LNCaP, DU145 and PC3 cell lines, which were then phenotypically investigated. RNA-Seq was performed on LNCaP cells lacking MBTPS2, and pathways validated by qPCR. Cholesterol metabolism was investigated by Filipin III staining. RESULTS: Mbtps2 was identified in our transposon-mediated in vivo screen to be associated with metastatic prostate cancer. Silencing of MBTPS2 expression in LNCaP, DU145 and PC3 human prostate cancer cells reduced proliferation and colony forming growth in vitro. Knockdown of MBTPS2 expression in LNCaP cells impaired cholesterol synthesis and uptake along with reduced expression of key regulators of fatty acid synthesis, namely FASN and ACACA. CONCLUSION: MBTPS2 is implicated in progressive prostate cancer and may mechanistically involve its effects on fatty acid and cholesterol metabolism.


Assuntos
Lipogênese , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Colesterol , Ácidos Graxos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
15.
Orthop Surg ; 15(4): 1060-1071, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36782343

RESUMO

OBJECTIVE: Osteosarcoma (OS) is regarded as one of the most common malignant bone tumors, mainly occurring in children and adolescents with high mortality. The dysregulation of lncRNAs is reported to regulate tumor development and be closely related to patient prognosis. Nevertheless, the role of long noncoding RNAs (lncRNAs) prostate-specific transcript 1 (PCGEM1) in OS remains uncharacterized. The current study aimed to explore the role of PCGEM1 in OS. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the expression of PCGEM1 in OS cell lines. CCK-8, colony formation, Transwell, and western blotting analyses were applied to measure OS cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) after PCGEM1 downregulation. Nuclear-cytoplasmic fractionation, RNA pulldown, RNA immunoprecipitation (RIP), luciferase reporter assays were performed to verify the relationship among PCGEM1, miR-433-3p. and OMA1 in OS. The xenograft tumor models were established to evaluate the effect of PCGEM1 on tumor growth of OS. RESULTS: In this study, we discovered that PCGEM1 knockdown inhibited cell proliferation, migration, invasion and EMT in OS (P < 0.05). Additionally, PCGEM1 directly bound to miR-433-3p (P < 0.01). OMA1 was confirmed to be a target gene of miR-433-3p (P < 0.05), positively regulated by PCGEM1 but negatively regulated by miR-433-3p. Rescue assays further verified that overexpression of OMA1 reversed the PCGEM1 knockdown-mediated inhibitory effect on the malignant phenotype in OS cells (P < 0.05). Moreover, knockdown of PCGEM1 inhibited tumor growth and metastasis in vivo (P < 0.05). CONCLUSIONS: Overall, PCGEM1 mediated tumor growth and metastasis of OS by sponging miR-433-3p and regulating OMA1, which might provide an innovative strategy for OS diagnosis or treatment.


Assuntos
Neoplasias Ósseas , Metaloendopeptidases , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , Masculino , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metaloendopeptidases/metabolismo
16.
Cell Prolif ; 56(2): e13362, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36433732

RESUMO

Acute kidney injury (AKI) is often secondary to sepsis. Increasing evidence suggests that mitochondrial dysfunction contributes to the pathological process of AKI. In this study, we aimed to examine the regulatory roles of Sirt3 in Lipopolysaccharide (LPS)-induced mitochondrial damage in renal tubular epithelial cells (TECs). Sirt3 knockout mice were intraperitoneally injected with LPS, and cultured TECs were stimulated with LPS to evaluate the effects of Sirt3 on mitochondrial structure and function in TECs. Electron microscopy was used to assess mitochondrial morphology. Immunofluorescence staining was performed to detect protein expression and examine mitochondrial morphology. Western blotting was used to quantify protein expression. We observed that LPS increased apoptosis, induced disturbances in mitochondrial function and dynamics, and downregulated Sirt3 expression in a sepsis-induced AKI mouse model and human proximal tubular (HK-2) cells in vitro. Sirt3 deficiency further exacerbated LPS-induced renal pathological damage, apoptosis and disturbances in mitochondrial function and dynamics. On the contrary, Sirt3 overexpression in HK-2 cells alleviated these lesions. Functional studies revealed that Sirt3 overexpression alleviated LPS-induced mitochondrial damage and apoptosis in TECs by promoting OPA1-mediated mitochondrial fusion through the deacetylation of i-AAA protease (YME1L1), an upstream regulatory molecule of OPA1. Our study has identified Sirt3 as a vital factor that protects against LPS-induced mitochondrial damage and apoptosis in TECs via the YME1L1-OPA1 signaling pathway.


Assuntos
Injúria Renal Aguda , Sepse , Sirtuína 3 , Camundongos , Animais , Humanos , Sirtuína 3/metabolismo , Lipopolissacarídeos/farmacologia , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Camundongos Knockout , Apoptose , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Metaloendopeptidases/efeitos adversos , Metaloendopeptidases/metabolismo , Proteínas Mitocondriais/metabolismo
17.
Cancer Sci ; 114(2): 348-356, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336966

RESUMO

Strategies to develop cancer therapies using inhibitors that target matrix metalloproteinases (MMPs), particularly membrane type-1 MMP (MT1-MMP), have failed. This is predominantly attributed to the specificity of MMP inhibitors and numerous functions of MMPs; therefore, targeting substrates with such broad specificity can lead to off-target effects. Thus, new drug development for cancer therapeutics should focus on the ability of MT1-MMP to break down substrates, such as functional cell membrane proteins, to regulate the functions of these proteins that promote tumor malignancy. In this review, we discuss the mechanism by which proteolysis of cell surface proteins by MT1-MMP promotes progression of malignant tumor cells. In addition, we discuss the two protein fragments generated by limited cleavage of erythropoietin-producing hepatoma receptor tyrosine kinase A2 (EphA2-NF, -CF), which represent a promising basis for developing new cancer therapies and diagnostic techniques.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteólise , Proteínas de Membrana/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloendopeptidases/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-36231910

RESUMO

Stromelysin-1 and stromelysin-2 (matrix metalloproteinase 3; MMP-3 and matrix metalloproteinase 10; MMP-10, respectively) are enzymes that activate other metalloproteinases. Apart from collagen, they also degrade elastin, fibronectin, gelatin and laminin. In carcinogenic processes, they are involved in angiogenesis and metastasis. Therefore, the aim of this study was to evaluate the DNA content, expression and activity of both stromelysines in cancers of human kidney. Renal carcinoma tissue samples were analyzed. Low- and high-grade cancer tissues were collected. Control material was collected from part of the kidney opposite to the tumor. DNA content, stromelysines content and stromelysin-1 and stromelysin-2 activity were measured using ELISA and Western blot methods. A higher content of deoxyribonucleic acid in low- and high-grade cancer tissues in comparison to the respective control tissue was observed. Both stromelysines were presented in control and cancer tissues in high-molecular-weight complexes. The content of MMP-10 was significantly higher in comparison to MMP-3 in all investigated tissues. Moreover, the content of stromelysin-2 was significantly higher in high-grade (G3) tissues compared to grade 2 (G2) kidney cancer. A significant decrease in the actual and specific activities of both stromelysines was observed with the increase in renal cancer grade. The presented results may indicate that the degradation of extracellular matrix increases with a higher grade of cancer. Moreover, the elevated content and decreased specific activity of stromelysin-2 in cancer tissue indicate that MMP-10 is mainly present in an inactive form in renal carcinoma. Detailed knowledge of the mechanism and participation of stromelysines in extracellular matrix degradation may be important in understanding the pathomechanism of renal cancer development. Therefore, the potential application of stromelysines in the monitoring or prognosis of kidney cancer should be discussed.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Colágeno , DNA , Elastina , Fibronectinas/metabolismo , Gelatina , Humanos , Laminina , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
19.
ACS Chem Biol ; 17(10): 2945-2953, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194691

RESUMO

Photoswitchable lipids have emerged as attractive tools for the optical control of lipid bioactivity, metabolism, and biophysical properties. Their design is typically based on the incorporation of an azobenzene photoswitch into the hydrophobic lipid tail, which can be switched between its trans- and cis-form using two different wavelengths of light. While glycero- and sphingolipids have been successfully designed to be photoswitchable, isoprenoid lipids have not yet been investigated. Herein, we describe the development of photoswitchable analogs of an isoprenoid lipid and systematically assess their potential for the optical control of various steps in the isoprenylation processing pathway of CaaX proteins in Saccharomyces cerevisiae. One photoswitchable analog of farnesyl diphosphate (AzoFPP-1) allowed effective optical control of substrate prenylation by farnesyltransferase. The subsequent steps of isoprenylation processing (proteolysis by either Ste24 or Rce1 and carboxyl methylation by Ste14) were less affected by photoisomerization of the group introduced into the lipid moiety of the substrate a-factor, a mating pheromone from yeast. We assessed both proteolysis and methylation of the a-factor analogs in vitro and the bioactivity of a fully processed a-factor analog containing the photoswitch, exogenously added to cognate yeast cells. Combined, these data describe the first successful conversion of an isoprenoid lipid into a photolipid and suggest the utility of this approach for the optical control of protein prenylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Farnesiltranstransferase/metabolismo , Peptídeos/química , Prenilação de Proteína , Feromônios , Lipídeos , Esfingolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Nat Commun ; 13(1): 6178, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261433

RESUMO

The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin ß, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin ß reveal unique features of the active site of meprin α, and helical assembly more broadly.


Assuntos
Fetuína-B , Metaloendopeptidases , Humanos , Microscopia Crioeletrônica , Metaloendopeptidases/metabolismo , Metaloproteases , Precursores Enzimáticos , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA