Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887323

RESUMO

The present study explores for the first time the effect of hyperbaric oxygen (HBO) on gingival mesenchymal stem cells' (G-MSCs) gene expression profile, intracellular pathway activation, pluripotency, and differentiation potential under an experimental inflammatory setup. G-MSCs were isolated from five healthy individuals (n = 5) and characterized. Single (24 h) or double (72 h) HBO stimulation (100% O2, 3 bar, 90 min) was performed under experimental inflammatory [IL-1ß (1 ng/mL)/TNF-α (10 ng/mL)/IFN-γ (100 ng/mL)] and non-inflammatory micro-environment. Next Generation Sequencing and KEGG pathway enrichment analysis, G-MSCs' pluripotency gene expression, Wnt-/ß-catenin pathway activation, proliferation, colony formation, and differentiation were investigated. G-MSCs demonstrated all mesenchymal stem/progenitor cells' characteristics. The beneficial effect of a single HBO stimulation was evident, with anti-inflammatory effects and induction of differentiation (TLL1, ID3, BHLHE40), proliferation/cell survival (BMF, ID3, TXNIP, PDK4, ABL2), migration (ABL2) and osteogenic differentiation (p < 0.05). A second HBO stimulation at 72 h had a detrimental effect, significantly increasing the inflammation-induced cellular stress and ROS accumulation through HMOX1, BHLHE40, and ARL4C amplification and pathway enrichment (p < 0.05). Results outline a positive short-term single HBO anti-inflammatory, regenerative, and differentiation stimulatory effect on G-MSCs. A second (72 h) stimulation is detrimental to the same properties. The current results could open new perspectives in the clinical application of short-termed HBO induction in G-MSCs-mediated periodontal reparative/regenerative mechanisms.


Assuntos
Oxigenoterapia Hiperbárica , Células-Tronco Mesenquimais , Humanos , Osteogênese , Oxigênio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Fatores Imunológicos/farmacologia , Anti-Inflamatórios/farmacologia , Metaloproteases Semelhantes a Toloide/metabolismo , Fatores de Ribosilação do ADP/metabolismo
2.
Nat Rev Cancer ; 21(4): 217-238, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589810

RESUMO

The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas ADAM/metabolismo , Proteínas ADAMTS/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Catepsinas/metabolismo , Movimento Celular , Colágeno/metabolismo , Cistatinas/metabolismo , Elastina/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fibrilinas/metabolismo , Glucuronidase/metabolismo , Glicoproteínas/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/enzimologia , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Proteoglicanas/metabolismo , Serpinas/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Microambiente Tumoral
3.
Sci Rep ; 7(1): 16958, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209066

RESUMO

The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Complemento C1q/metabolismo , Lectina de Ligação a Manose/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Sítios de Ligação , Proteína Morfogenética Óssea 1/genética , Ativação do Complemento , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
Matrix Biol ; 56: 114-131, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27363389

RESUMO

Closely related extracellular metalloproteinases bone morphogenetic protein 1 (BMP1) and mammalian Tolloid-like 1 (mTLL1) are co-expressed in various tissues and have been suggested to have overlapping roles in the biosynthetic processing of extracellular matrix components. Early lethality of mice null for the BMP1 gene Bmp1 or the mTLL1 gene Tll1 has impaired in vivo studies of these proteinases. To overcome issues of early lethality and functional redundancy we developed the novel BTKO mouse strain, with floxed Bmp1 and Tll1 alleles, for induction of postnatal, simultaneous ablation of the two genes. We previously showed these mice to have a skeletal phenotype that includes elements of osteogenesis imperfecta (OI), osteomalacia, and deficient osteocyte maturation, observations validated by the finding of BMP1 mutations in a subset of human patients with OI-like phenotypes. However, the roles of BMP1-like proteinase in non-skeletal tissues have yet to be explored, despite the supposed importance of putative substrates of these proteinases in such tissues. Here, we employ BTKO mice to investigate potential roles for these proteinases in skin. Loss of BMP1-like proteinase activity is shown to result in markedly thinned and fragile skin with unusually densely packed collagen fibrils and delayed wound healing. We demonstrate deficits in the processing of collagens I and III, decorin, biglycan, and laminin 332 in skin, which indicate mechanisms whereby BMP1-like proteinases affect the biology of this tissue. In contrast, lack of effects on collagen VII processing or deposition indicates this putative substrate to be biosynthetically processed by non-BMP1-like proteinases.


Assuntos
Proteína Morfogenética Óssea 1/genética , Derme/enzimologia , Metaloproteases Semelhantes a Toloide/genética , Animais , Biglicano/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Células Cultivadas , Decorina/metabolismo , Derme/citologia , Técnicas de Inativação de Genes , Masculino , Camundongos Transgênicos , Reepitelização , Metaloproteases Semelhantes a Toloide/metabolismo
5.
Biochem Soc Trans ; 43(5): 795-800, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517884

RESUMO

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin-BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Transdução de Sinais , Metaloproteases Semelhantes a Toloide/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/agonistas , Receptores de Proteínas Morfogenéticas Ósseas/química , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Glicoproteínas/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas/química , Proteólise , Metaloproteases Semelhantes a Toloide/química
6.
Hum Mol Genet ; 23(12): 3085-101, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24419319

RESUMO

Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by dominant mutations in the collagen I genes COL1A1/COL1A2, whereas rarer recessive OI is often caused by mutations in genes encoding collagen I-interacting proteins. Recently, mutations in the gene for the proteinase bone morphogenetic 1 (BMP1) were reported in two recessive OI families. BMP1 and the closely related proteinase mammalian tolloid-like 1 (mTLL1) are co-expressed in various tissues, including bone, and have overlapping activities that include biosynthetic processing of procollagen precursors into mature collagen monomers. However, early lethality of Bmp1- and Tll1-null mice has precluded use of such models for careful study of in vivo roles of their protein products. Here we employ novel mouse strains with floxed Bmp1 and Tll1 alleles to induce postnatal, simultaneous ablation of the two genes, thus avoiding barriers of Bmp1(-/-) and Tll1(-/-) lethality and issues of functional redundancy. Bones of the conditionally null mice are dramatically weakened and brittle, with spontaneous fractures-defining features of OI. Additional skeletal features include osteomalacia, thinned/porous cortical bone, reduced processing of procollagen and dentin matrix protein 1, remarkably high bone turnover and defective osteocyte maturation that is accompanied by decreased expression of the osteocyte marker and Wnt-signaling inhibitor sclerostin, and by marked induction of canonical Wnt signaling. The novel animal model presented here provides new opportunities for in-depth analyses of in vivo roles of BMP1-like proteinases in bone and other tissues, and for their roles, and for possible therapeutic interventions, in OI.


Assuntos
Proteína Morfogenética Óssea 1/genética , Fêmur/patologia , Técnicas de Silenciamento de Genes/métodos , Osteogênese Imperfeita/patologia , Metaloproteases Semelhantes a Toloide/genética , Animais , Proteína Morfogenética Óssea 1/metabolismo , Modelos Animais de Doenças , Fêmur/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Osteogênese Imperfeita/genética , Metaloproteases Semelhantes a Toloide/metabolismo
7.
J Biol Chem ; 286(33): 29014-29025, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21697095

RESUMO

The bone morphogenetic protein-1 (BMP1)-like metalloproteinases play key roles in extracellular matrix formation, by converting precursors into mature functional proteins involved in forming the extracellular matrix. The BMP1-like proteinases also play roles in activating growth factors, such as BMP2/4, myostatin, growth differentiation factor 11, and transforming growth factor ß1, by cleaving extracellular antagonists. The extracellular insulin-like growth factor-binding proteins (IGFBPs) are involved in regulating the effects of insulin-like growth factors (IGFs) on growth, development, and metabolism. Of the six IGFBPs, IGFBP3 has the greatest interaction with the large pool of circulating IGFs. It is also produced locally in tissues and is itself regulated by proteolytic processing. Here, we show that BMP1 cleaves human and mouse IGFBP3 at a single conserved site, resulting in markedly reduced ability of cleaved IGFBP3 to bind IGF-I or to block IGF-I-induced cell signaling. In contrast, such cleavage is shown to result in enhanced IGF-I-independent ability of cleaved IGFBP3 to block FGF-induced proliferation and to induce Smad phosphorylation. Consistent with in vivo roles for such cleavage, it is shown that, whereas wild type mouse embryo fibroblasts (MEFs) produce cleaved IGFBP3, MEFs doubly null for the Bmp1 gene and for the Tll1 gene, which encodes the related metalloproteinase mammalian Tolloid-like 1 (mTLL1), produce only unprocessed IGFBP3, thus demonstrating endogenous BMP1-related proteinases to be responsible for IGFBP3-processing activity in MEFs. Similarly, in zebrafish embryos, overexpression of Bmp1a is shown to reverse an Igfbp3-induced phenotype, consistent with the ability of BMP1-like proteinases to cleave IGFBP3 in vivo.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Animais , Proteína Morfogenética Óssea 1/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Mutantes , Transdução de Sinais/fisiologia , Proteínas Smad , Metaloproteases Semelhantes a Toloide/genética , Metaloproteases Semelhantes a Toloide/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Tohoku J Exp Med ; 221(1): 11-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20448436

RESUMO

Secreted Frizzled Related Proteins (Sfrps) are a family of secreted proteins that can bind both to Wnt ligands and Frizzled receptors, thereby modulating the Wnt signalling cascades. Recent studies have shown that Sfrps can also interact with Wnt unrelated molecules such as RANKL, a member of the tumor necrosis factor family, Tolloid metalloproteinases or integrin-fibronectin complexes. Alterations in the levels of Sfrp expression have been recently associated with different pathological conditions, including tumor formation and bone and myocardial disorders. Here, we summarise the evidence that relates Sfrps with these diseases and discuss how the proposed multiple Sfrp interactions with Wnt related and unrelated pathways may explain their implication in such diverse pathologies.


Assuntos
Doenças Ósseas/metabolismo , Cardiopatias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Doenças Ósseas/patologia , Fibronectinas/metabolismo , Cardiopatias/patologia , Humanos , Integrina alfa5beta1/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Neoplasias/patologia , Ligação Proteica , Ligante RANK/metabolismo , Transdução de Sinais , Metaloproteases Semelhantes a Toloide/metabolismo , Proteínas Wnt/metabolismo
9.
J Biol Chem ; 285(21): 15950-9, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20207734

RESUMO

The netrin-like (NTR) domain is a feature of several extracellular proteins, most notably the N-terminal domain of tissue inhibitors of metalloproteinases (TIMPs), where it functions as a strong inhibitor of matrix metalloproteinases and some other members of the metzincin superfamily. The presence of a C-terminal NTR domain in procollagen C-proteinase enhancers (PCPEs), proteins that stimulate the activity of astacin-like tolloid proteinases, raises the possibility that this might also have inhibitory activity. Here we show that both long and short forms of the PCPE-1 NTR domain, the latter beginning at the N-terminal cysteine known to be critical for TIMP activity, show no inhibition, at micromolar concentrations, of several members of the metzincin superfamily, including matrix metalloproteinase-2, bone morphogenetic protein-1 (a tolloid proteinase), and different ADAMTS (a disintegrin and a metalloproteinase with thrombospondin motifs) proteinases from the adamalysin family. In contrast, we report that the NTR domain within PCPE-1 leads to superstimulation of bone morphogenetic protein-1 activity in the presence of heparin and heparan sulfate. These observations point to a new mechanism whereby binding to cell surface-associated or extracellular heparin-like sulfated glycosaminoglycans might provide a means to accelerate procollagen processing in specific cellular and extracellular microenvironments.


Assuntos
Proteínas ADAM/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Linhagem Celular , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Pró-Colágeno/química , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Estrutura Terciária de Proteína , Inibidores Teciduais de Metaloproteinases/química , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Metaloproteases Semelhantes a Toloide/química , Metaloproteases Semelhantes a Toloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA