Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704890

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferase , Metiltransferases , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 19(4): e0301086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662719

RESUMO

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Assuntos
Antivirais , Iridoides , Simulação de Acoplamento Molecular , Olea , Extratos Vegetais , Folhas de Planta , Polifenóis , SARS-CoV-2 , Olea/química , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia , Iridoides/química , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/química , Glucosídeos/farmacologia , Glucosídeos/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Simulação por Computador , Tratamento Farmacológico da COVID-19 , Luteolina/farmacologia , Luteolina/química , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , Apigenina/farmacologia , Apigenina/química
3.
PeerJ ; 12: e17222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650654

RESUMO

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Metiltransferases , Neoplasias Bucais , Neovascularização Patológica , Receptor Notch1 , Proteínas Repressoras , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Linhagem Celular Tumoral , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Angiogênese
4.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909922

RESUMO

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Assuntos
Azetidinas , Inibidores Enzimáticos , Metiltransferases , tRNA Metiltransferases , Humanos , Acrilamidas , Cisteína/metabolismo , Metilação , Metiltransferases/antagonistas & inibidores , Proteômica , RNA de Transferência/química , tRNA Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
5.
Mol Cell Biol ; 43(3): 115-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941772

RESUMO

CDKN2A/B deletion or silencing is common across human cancer, reinforcing the general importance of bypassing its tumor suppression in cancer formation or progression. In rhabdomyosarcoma (RMS) and neuroblastoma, two common childhood cancers, the three CDKN2A/B transcripts are independently expressed to varying degrees, but one, ARF, is uniformly silenced. Although TGFß induces certain CDKN2A/B transcripts in HeLa cells, it was unable to do so in five tested RMS lines unless the cells were pretreated with a broadly acting methyltransferase inhibitor, DZNep, or one targeting EZH2. CDKN2A/B induction by TGFß correlated with de novo appearance of three H3K27Ac peaks within a 20 kb cis element ∼150 kb proximal to CDKN2A/B. Deleting that segment prevented their induction by TGFß but not a basal increase driven by methyltransferase inhibition alone. Expression of two CDKN2A/B transcripts was enhanced by dCas9/CRISPR activation targeting either the relevant promoter or the 20 kb cis elements, and this "precise" manipulation diminished RMS cell propagation in vitro. Our findings show crosstalk between methyltransferase inhibition and TGFß-dependent activation of a remote enhancer to reverse CDKN2A/B silencing. Though focused on CDKN2A/B here, such crosstalk may apply to other TGFß-responsive genes and perhaps govern this signaling protein's complex effects promoting or blocking cancer.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15 , Inibidor p16 de Quinase Dependente de Ciclina , Metiltransferases , Neoplasias , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células HeLa , Metiltransferases/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo
6.
Science ; 379(6632): 586-591, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758070

RESUMO

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Assuntos
Alphainfluenzavirus , Antivirais , Betainfluenzavirus , Produtos Biológicos , Inibidores Enzimáticos , Metiltransferases , Capuzes de RNA , Tubercidina , Replicação Viral , Animais , Humanos , Camundongos , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , Replicação Viral/efeitos dos fármacos , Alphainfluenzavirus/efeitos dos fármacos , Betainfluenzavirus/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Streptomyces/química , Simulação por Computador , Células A549
7.
Nature ; 613(7943): 391-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599985

RESUMO

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Assuntos
Proteínas de Ligação ao GTP , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Biocatálise , Domínio Catalítico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/metabolismo , Fosforilação , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato
8.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677825

RESUMO

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Assuntos
Antivirais , Metiltransferases , SARS-CoV-2 , Metilação , Metiltransferases/antagonistas & inibidores , RNA Mensageiro/genética , RNA Viral/genética , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia
9.
ACS Infect Dis ; 8(12): 2430-2440, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417754

RESUMO

Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 µM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 µM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 µM.


Assuntos
Proteínas de Bactérias , Metiltransferases , Mycobacterium tuberculosis , Vitamina K 2 , Humanos , Escherichia coli/genética , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Vitamina K 2/metabolismo
10.
Immunol Cell Biol ; 100(9): 718-730, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36005900

RESUMO

Alloreactive CD4+ T cells play a central role in allograft rejection. However, the post-transcriptional regulation of the effector program in alloreactive CD4+ T cells remains unclear. N6 -methyladenosine (m6 A) RNA modification is involved in various physiological and pathological processes. Herein, we investigated whether m6 A methylation plays a role in the allogeneic T-cell effector program. m6 A levels of CD4+ T cells from spleens, draining lymph nodes and skin allografts were determined in a skin transplantation model. The effects of a METTL3 inhibitor (STM2457) on CD4+ T-cell characteristics including proliferation, cell cycle, cell apoptosis and effector differentiation were determined after stimulation of polyclonal and alloantigen-specific (TEa; CD4+ T cells specific for I-Eα52-68 ) CD4+ T cells with α-CD3/α-CD28 monoclonal antibodies and cognate CB6F1 alloantigen, respectively. We found that graft-infiltrating CD4+ T cells expressed high m6 A levels. Administration of STM2457 reduced m6 A levels, inhibited T-cell proliferation and suppressed effector differentiation of polyclonal CD4+ T cells. Alloreactive TEa cells challenged with 40 µm STM2457 exhibited deficits in T-cell proliferation and T helper type 1 cell differentiation, a cell cycle arrest in the G0 phase and elevated cell apoptosis. Moreover, these impaired T-cell responses were associated with the diminished expression levels of transcription factors Ki-67, c-Myc and T-bet. Therefore, METTL3 inhibition reduces the expression of several key transcriptional factors for the T-cell effector program and suppresses alloreactive CD4+ T-cell effector function and differentiation. Targeting m6 A-related enzymes and molecular machinery in CD4+ T cells represents an attractive therapeutic approach to prevent allograft rejection.


Assuntos
Adenosina/análogos & derivados , Linfócitos T CD4-Positivos , Transplante de Células-Tronco Hematopoéticas , Metiltransferases , Adenosina/análise , Animais , Anticorpos Monoclonais/metabolismo , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos , Rejeição de Enxerto , Isoantígenos , Antígeno Ki-67 , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA/metabolismo , Fatores de Transcrição/metabolismo
11.
ACS Infect Dis ; 8(8): 1533-1542, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822715

RESUMO

SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC50 values ranging from 6 ± 0.5 to 50 ± 6 µM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.


Assuntos
Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/química , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases , COVID-19/virologia , DNA de Cadeia Simples , Humanos , Metiltransferases/antagonistas & inibidores , Ácidos Nucleicos/metabolismo , RNA Helicases/antagonistas & inibidores , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/antagonistas & inibidores
12.
Nat Commun ; 13(1): 3739, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768432

RESUMO

Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1. In the absence of Suv39h1, anti-PD-1 induces alternative activation pathways allowing survival and differentiation of IFNγ and Granzyme B producing effector cells that express negative checkpoint molecules, but do not reach final exhaustion. Their transcriptional program correlates with that of melanoma patients responding to immune-checkpoint blockade and identifies the emergence of cytolytic-effector tumor-infiltrating lymphocytes as a biomarker of clinical response. Anti-PD-1 favors chromatin opening in loci linked to T-cell activation, memory and pluripotency, but in the absence of Suv39h1, cells acquire accessibility in cytolytic effector loci. Overall, Suv39h1 inhibition enhances anti-tumor immune responses, alone or combined with anti-PD-1, suggesting that Suv39h1 is an "epigenetic checkpoint" for tumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Metiltransferases , Receptor de Morte Celular Programada 1 , Proteínas Repressoras , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/imunologia , Metiltransferases/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
Nature ; 607(7919): 593-603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768510

RESUMO

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Assuntos
5-Metilcitosina , Citosina/análogos & derivados , Glicólise , Mitocôndrias , Metástase Neoplásica , Fosforilação Oxidativa , RNA Mitocondrial , 5-Metilcitosina/biossíntese , 5-Metilcitosina/metabolismo , Antígenos CD36 , Sobrevivência Celular , Citosina/metabolismo , Progressão da Doença , Glicólise/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo
14.
Nucleic Acids Res ; 50(8): 4216-4245, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412633

RESUMO

RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.


Assuntos
Metiltransferases/antagonistas & inibidores , RNA , Desenvolvimento de Medicamentos , Humanos , S-Adenosilmetionina/análogos & derivados
15.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408684

RESUMO

As a continuation of our earlier work against SARS-CoV-2, seven FDA-approved drugs were designated as the best SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (2'OMTase) inhibitors through 3009 compounds. The in silico inhibitory potential of the examined compounds against SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (PDB ID: (6W4H) was conducted through a multi-step screening approach. At the beginning, molecular fingerprints experiment with SAM (S-Adenosylmethionine), the co-crystallized ligand of the targeted enzyme, unveiled the resemblance of 147 drugs. Then, a structural similarity experiment recommended 26 compounds. Therefore, the 26 compounds were docked against 2'OMTase to reveal the potential inhibitory effect of seven promising compounds (Protirelin, (1187), Calcium folinate (1913), Raltegravir (1995), Regadenoson (2176), Ertapenem (2396), Methylergometrine (2532), and Thiamine pyrophosphate hydrochloride (2612)). Out of the docked ligands, Ertapenem (2396) showed an ideal binding mode like that of the co-crystallized ligand (SAM). It occupied all sub-pockets of the active site and bound the crucial amino acids. Accordingly, some MD simulation experiments (RMSD, RMSF, Rg, SASA, and H-bonding) have been conducted for the 2'OMTase-Ertapenem complex over 100 ns. The performed MD experiments verified the correct binding mode of Ertapenem against 2'OMTase exhibiting low energy and optimal dynamics. Finally, MM-PBSA studies indicated that Ertapenem bonded advantageously to the targeted protein with a free energy value of -43 KJ/mol. Furthermore, the binding free energy analysis revealed the essential amino acids of 2'OMTase that served positively to the binding. The achieved results bring hope to find a treatment for COVID-19 via in vitro and in vivo studies for the pointed compounds.


Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Ertapenem/farmacologia , Ligantes , Metiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores
16.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209173

RESUMO

Protein N-terminal methyltransferase 1 (NTMT1) recognizes a unique N-terminal X-P-K/R motif (X represents any amino acid other than D/E) and transfers 1-3 methyl groups to the N-terminal region of its substrates. Guided by the co-crystal structures of NTMT1 in complex with the previously reported peptidomimetic inhibitor DC113, we designed and synthesized a series of new peptidomimetic inhibitors. Through a focused optimization of DC113, we discovered a new cell-potent peptidomimetic inhibitor GD562 (IC50 = 0.93 ± 0.04 µM). GD562 exhibited improved inhibition of the cellular N-terminal methylation levels of both the regulator of chromosome condensation 1 and the oncoprotein SET with an IC50 value of ~50 µM in human colorectal cancer HCT116 cells. Notably, the inhibitory activity of GD562 for the SET protein increased over 6-fold compared with the previously reported cell-potent inhibitor DC541. Furthermore, GD562 also exhibited over 100-fold selectivity for NTMT1 against several other methyltransferases. Thus, this study provides a valuable probe to investigate the biological functions of NTMT1.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Metiltransferases/antagonistas & inibidores , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Metilação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 230: 114118, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063732

RESUMO

Methyltransferase complex, such as METTL3/METTL14/WTP, catalyze N6-methyladenosine (m6A), which is the most abundant mRNA modification in mammals. Besides acting as a m6A methyltransferase, METTL3 also regulates mRNA translation and other biological processes. Studies have identified numerous roles and molecular mechanisms associated with METTL3 in multiple biological processes especially in tumors in recent years. Furthermore, targeting METTL3 as an efficient therapeutic way for the treatment of different kinds of tumors has gained a lot of attention. However, these findings and researches have not been summarized. In this review, the most recent important roles of METTL3 in various tumors including acute myeloid leukemia, lung cancer, breast cancer, liver cancer, gastric cancer, pancreatic cancer, colorectal cancer, bladder cancer, prostate cancer and glioblastoma were systematically summarized. In addition, disclosed METTL3 inhibitors recently were also summarized and discussed for medicinal chemists investigating METTL3 inhibitors with different skeleton structures for the application of human cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Metiltransferases , Neoplasias/tratamento farmacológico , Adenosina/metabolismo , Animais , Desenvolvimento de Medicamentos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Biossíntese de Proteínas
18.
Drug Dev Res ; 83(3): 783-799, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040501

RESUMO

m6 A RNA methyltransferase (METTL3-14) catalyzes the methylation of adenosine in mRNA and plays important roles in mRNA functions, and it has been implicated in the progression of multiple cancers, including acute myeloid leukemia (AML). In this study, we describe the discovery of the first allosteric inhibitor of the METTL3-14 complex based on structure-activity relationship (SAR) and optimization studies of the hit compound, 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Compound 43n was optimized throughout the modifications of 4 different regions of the structure, and it displayed potent enzyme inhibitory activity of the METTL3-14 complex (IC50  = 2.81 µM) and an antiproliferative effect in the AML cell lines by suppressing the m6 A level of mRNA. The inhibition mechanism and binding mode of 43n were based on the interaction of the reversible and noncompetitive inhibitory profile at the allosteric site along with selectivity for the METTL3-14 complex relative to each subunit enzyme or truncated complex enzyme.


Assuntos
Inibidores Enzimáticos , Leucemia Mieloide Aguda , Metiltransferases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/química , RNA/metabolismo , RNA Mensageiro/metabolismo
19.
FEBS J ; 289(5): 1276-1301, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33982887

RESUMO

The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética , Histonas/genética , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Drogas em Investigação/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Terapia de Alvo Molecular/métodos , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
20.
Antiviral Res ; 197: 105232, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968527

RESUMO

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Assuntos
Adenosina/análogos & derivados , Genoma Viral/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Adenosina/farmacologia , Animais , Embrião de Galinha , Chlorocebus aethiops , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Farmacorresistência Viral/efeitos dos fármacos , Genoma Viral/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Dose Letal Mediana , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Coelhos , SARS-CoV-2/genética , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA