Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.157
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38745265

RESUMO

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Assuntos
Proliferação de Células , Progressão da Doença , Fatores Reguladores de Interferon , Metiltransferases , Regulação para Cima , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular/genética , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo
2.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725850

RESUMO

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Assuntos
Adenosina , Lipopolissacarídeos , Macrófagos , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Metilação/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Metiltransferases/metabolismo , Metiltransferases/genética , Inflamação/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Células RAW 264.7
3.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741032

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Assuntos
Adenosina , Células Endoteliais , Transição Epitelial-Mesenquimal , Hipertensão Pulmonar , Fatores de Transcrição Kruppel-Like , Metiltransferases , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Metilação , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Caderinas/genética , Masculino , Remodelação Vascular/genética , Células Cultivadas
4.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701556

RESUMO

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Assuntos
Adenosina , Metiltransferases , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Metilação , Linhagem Celular Tumoral , Proliferação de Células/genética , Animais , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Prognóstico , Sobrevivência Celular/genética
5.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704890

RESUMO

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferase , Metiltransferases , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Biol Ther ; 25(1): 2349429, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738555

RESUMO

Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.


Assuntos
Ferroptose , Metiltransferases , Estabilidade de RNA , Sorafenibe , Neoplasias do Colo do Útero , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Camundongos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Estabilidade de RNA/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Prognóstico , Ferritinas , Oxirredutases
7.
Nat Commun ; 15(1): 4284, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769304

RESUMO

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.


Assuntos
Adenosina , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Homozigoto , Metiltransferases , Mutação de Sentido Incorreto , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de RNA , Proteínas do Tecido Nervoso
8.
J Cancer Res Clin Oncol ; 150(5): 245, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722372

RESUMO

BACKGROUND: Ribosomal RNA Processing 8 (RRP8) is a nucleolar Rossman fold-like methyltransferase that exhibits increased expression in many malignant tumours. However, the role of RRP8 in hepatocellular carcinoma (HCC) is still uncertain. We explored the relationships between RRP8 and prognosis and immune infiltration, as well as the putative pathological function and mechanism of RRP8 in HCC. METHODS: Analysis of RRP8 expression across cancers was performed by using multiple databases. Associations between RRP8 expression and clinicopathological factors were further examined. Gene enrichment analysis was used to identify various putative biological activities and regulatory networks of RRP8 in HCC. The relationship between RRP8 expression and immune infiltration was confirmed by single-sample gene set enrichment analysis (ssGSEA). Univariate and multivariate Cox regression analyses were conducted to assess the impact of clinical variables on patient outcomes. Furthermore, a nomogram was constructed to estimate survival probability based on multivariate Cox regression analysis. Functional validation of RRP8 in HCC was performed with two different systems: doxycycline-inducible shRNA knockdown and CRISPR-Cas9 knockout. RESULTS: RRP8 was markedly overexpressed in HCC clinical specimens compared to adjacent normal tissues. Further analysis demonstrated that RRP8 was directly connected to multiple clinical characteristics and strongly associated with various immune markers in HCC. Moreover, elevated RRP8 expression indicated an unfavourable prognosis. Our functional studies revealed that both knockdown and knockout of RRP8 dramatically attenuated liver cancer cells to proliferate and migrate. Knockout of RRP8 decreased the phosphorylation of MEK1/2 and ß-catenin-(Y654) signalling pathway components; downregulated downstream signalling effectors, including Cyclin D1 and N-cadherin; and upregulated E-cadherin. CONCLUSIONS: RRP8 is strongly implicated in immune infiltration and could be a potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino , Proliferação de Células , Linhagem Celular Tumoral , Estudos Prospectivos
9.
World J Surg Oncol ; 22(1): 128, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725005

RESUMO

BACKGROUND: N6-methyladenosine (m6A) modification plays an important role in lung cancer. However, methyltransferase-like 14 (METTL14), which serves as the main component of the m6A complex, has been less reported to be involved in the immune microenvironment of lung cancer. This study aimed to analyze the relationship between METTL14 and the immune checkpoint inhibitor programmed death receptor 1 (PD-1) in lung cancer. METHODS: CCK-8, colony formation, transwell, wound healing, and flow cytometry assays were performed to explore the role of METTL14 in lung cancer progression in vitro. Furthermore, syngeneic model mice were treated with sh-METTL14 andan anti-PD-1 antibody to observe the effect of METTL14 on immunotherapy. Flow cytometry and immunohistochemical (IHC) staining were used to detect CD8 expression. RIP and MeRIP were performed to assess the relationship between METTL14 and HSD17B6. LLC cells and activated mouse PBMCs were cocultured in vitro to mimic immune cell infiltration in the tumor microenvironment. ELISA was used to detect IFN-γ and TNF-α levels. RESULTS: The online database GEPIA showed that high METTL14 expression indicated a poor prognosis in patients with lung cancer. In vitro assays suggested that METTL14 knockdown suppressed lung cancer progression. In vivo assays revealed that METTL14 knockdown inhibited tumor growth and enhanced the response to PD-1 immunotherapy. Furthermore, METTL14 knockdown enhanced CD8+T-cell activation and infiltration. More importantly, METTL14 knockdown increased the stability of HSD17B6 mRNA by reducing its m6A methylation. In addition, HSD17B6 overexpression promoted the activation of CD8+ T cells. CONCLUSION: The disruption of METTL14 contributed to CD8+T-cell activation and the immunotherapy response to PD-1 via m6A modification of HSD17B6, thereby suppressing lung cancer progression.


Assuntos
Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Metiltransferases , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Proliferação de Células , Células Tumorais Cultivadas , Prognóstico , Imunoterapia/métodos , Feminino
10.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766656

RESUMO

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Assuntos
Diferenciação Celular , Nanopartículas , Células-Tronco Neurais , Diferenciação Celular/efeitos dos fármacos , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Camundongos , Nanopartículas/química , Metilação/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Tamanho da Partícula , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Adenosina/farmacologia , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia
11.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774758

RESUMO

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Assuntos
Fígado , Sistema de Sinalização das MAP Quinases , Metiltransferases , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Camundongos , Metiltransferases/genética , Metiltransferases/metabolismo , Fígado/patologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Modelos Animais de Doenças , Masculino , Apoptose/genética , Camundongos Knockout , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos Endogâmicos C57BL
12.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
13.
Oncol Rep ; 51(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757383

RESUMO

Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle­aged males between the ages of 45 and 60 years, and is the highest cause of cancer­associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6­methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro­molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.


Assuntos
Adenosina , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Epigênese Genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética
14.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701738

RESUMO

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Estruturas R-Loop , Metiltransferases/metabolismo , Metiltransferases/genética , Instabilidade Genômica , Adenosina/metabolismo , Adenosina/análogos & derivados , Terminação da Transcrição Genética
15.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744809

RESUMO

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Assuntos
Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metiltransferases , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-akt , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Transdução de Sinais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Mitocôndrias/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proliferação de Células
16.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627387

RESUMO

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Assuntos
NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Regulação para Baixo/genética , Cirrose Hepática/metabolismo , Macrófagos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Quimiocinas , Proteína A4 de Ligação a Cálcio da Família S100
17.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643323

RESUMO

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Assuntos
Curcumina , Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Curcumina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , RNA , Oxigênio/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenase FTO Dependente de alfa-Cetoglutarato
18.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679464

RESUMO

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferases , Proteínas dos Microfilamentos , Infecções por Papillomavirus , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Proteínas Repressoras , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
19.
Biochem Soc Trans ; 52(2): 707-717, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629637

RESUMO

The RNA modification N6-methyladenosine (m6A) is conserved across eukaryotes, and profoundly influences RNA metabolism, including regulating RNA stability. METTL3 and METTL14, together with several accessory components, form a 'writer' complex catalysing m6A modification. Conversely, FTO and ALKBH5 function as demethylases, rendering m6A dynamic. Key to understanding the functional significance of m6A is its 'reader' proteins, exemplified by YTH-domain-containing proteins (YTHDFs) canonical reader and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) non-canonical reader. These proteins play a crucial role in determining RNA stability: YTHDFs mainly promote mRNA degradation through different cytoplasmic pathways, whereas IGF2BPs function to maintain mRNA stability. Additionally, YTHDC1 functions within the nucleus to degrade or protect certain m6A-containing RNAs, and other non-canonical readers also contribute to RNA stability regulation. Notably, m6A regulates retrotransposon LINE1 RNA stability and/or transcription via multiple mechanisms. However, conflicting observations underscore the complexities underlying m6A's regulation of RNA stability depending upon the RNA sequence/structure context, developmental stage, and/or cellular environment. Understanding the interplay between m6A and other RNA regulatory elements is pivotal in deciphering the multifaceted roles m6A plays in RNA stability regulation and broader cellular biology.


Assuntos
Adenosina , Adenosina/análogos & derivados , Estabilidade de RNA , Proteínas de Ligação a RNA , Adenosina/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Metiltransferases/metabolismo , RNA/metabolismo , RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Processamento Pós-Transcricional do RNA , Metilação de RNA
20.
Cancer Lett ; 590: 216840, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604311

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies, highlighting the urgent need to elucidate the underlying oncogenic mechanisms. VIRMA is a classic isoform of methyltransferases that participates in epigenetic transcriptomic modification in eukaryotic mRNAs. However, the exact roles of VIRMA in PDAC remain unclear. Here, we identified that VIRMA is highly expressed in PDAC, and histone modifications of the promoter may partly account for this dysregulation. Moreover, VIRMA is closely related to glycolysis and poor prognosis in PDAC. We further determined that STRA6 is a direct downstream target of VIRMA in PDAC by RNA sequencing (RNA-seq) and m6A sequencing (m6A-seq). VIRMA is involved in gene expression regulation via 3' UTR targeting of STRA6 mRNA. Furthermore, the m6A reader IGF2BP2 was shown to critically contribute to the stability of STRA6 mRNA. We describe the role of VIRMA in promoting signaling via the STRA6/STAT3 axis, which results in increased levels of HIF-1α, a key activator of glycolysis. In vivo and in vitro experiments reveal that the VIRMA-STRA6-STAT3-HIF-1α axis plays an instrumental role in glycolysis and tumor progression in PDAC. In conclusion, we demonstrate that VIRMA can increase glycolysis in PDAC by upregulating STRA6, a cell surface membrane protein that stimulates the STAT3 pathway, thereby activating HIF-1α and leading to pancreatic cancer malignancy. Overall, our data strongly suggest that the VIRMA-STRA6-STAT3-HIF-1α axis is a viable therapeutic target in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Pancreáticas , Regulação para Cima , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Glicólise/genética , Linhagem Celular Tumoral , Animais , Progressão da Doença , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Camundongos Nus , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA