Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(12): e2250360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37736882

RESUMO

In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase ß phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase ß. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.


Assuntos
Leucemia , Mastócitos , Ratos , Camundongos , Animais , Metiotepina/metabolismo , Metiotepina/farmacologia , Quinase I-kappa B/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Medula Óssea/metabolismo , Ionomicina/metabolismo , Ionomicina/farmacologia , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Degranulação Celular , Quinase Syk/metabolismo , Receptores de IgE
2.
Eur J Pharmacol ; 380(2-3): 171-81, 1999 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-10513577

RESUMO

Site-directed mutagenesis of the human 5-HT1B receptor was performed to investigate the role of the amino acid residues cysteine 326 and tryptophan 327 in transmembrane region VI and aspartic acid 352 in transmembrane region VII in ligand binding. Binding studies were performed with the antagonist radioligand [3H]GR125743 on mutant and wild-type receptors stably expressed in Chinese hamster ovary cells (CHO)-K1 cells. Substitution of tryptophan 327 by alanine resulted in decreased affinities of all ligands tested. The most prominent changes in affinity were observed for the antagonist methiothepin and the antimigraine drug sumatriptan, which were reduced approximately 300- and 60-fold, respectively. Nevertheless, the affinity of 5-HT remained the same. Replacement of the aspartic acid 352 by alanine reduced high-affinity binding of 5-HT. Substitution of cysteine 326 by alanine had minor effects on ligand binding. Some of these results agree with the results from mutagenesis studies of the corresponding amino acids in other receptors. However, some notable differences also emerge showing that functional roles of individual amino acid residues must be tested experimentally in each receptor subtype.


Assuntos
Aminoácidos/metabolismo , Metiotepina/metabolismo , Receptores de Serotonina/metabolismo , Sumatriptana/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Benzamidas/metabolismo , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Piridinas/metabolismo , Ensaio Radioligante , Receptor 5-HT1B de Serotonina , Receptores de Serotonina/química , Receptores de Serotonina/genética , Homologia de Sequência de Aminoácidos , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Sódio/farmacologia , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA