RESUMO
BACKGROUND/OBJECTIVES: Antrodia camphorata, also known as "Niuchangchih" in Taiwan, is a unique medicinal mushroom native to Taiwan. It is used in traditional medicine to treat various health conditions. In this study, we investigated the efficacy of A. camphorata mycelia on alcohol-induced liver damage, both in vitro and in vivo, in a Good Laboratory Practice (GLP) facility. METHODS: The experimental groups consisted of a normal control group (G1), a negative control group (G2), an A. camphorata mycelium powder 50 mg/kg/day administration group (G3), a 100 mg/kg/day administration group (G4), a 200 mg/kg/day administration group (G5), and a positive control silymarin 200 mg/kg/day administration group (G6), with 10 Sprague Dawley rats assigned to each treatment group. RESULTS: We found that treatment with A. camphorata mycelium powder significantly reduced alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, cholesterol, adiponectin, triglyceride, and malondialdehyde concentrations. Histopathological analysis also revealed that the inflammation score significantly decreased in the A. camphorata-treated groups. CONCLUSION: Based on these results, we conclude that repeated oral administration of A. camphorata mycelium powder is effective in improving alcoholic liver disease.
Assuntos
Fígado , Micélio , Pós , Ratos Sprague-Dawley , Micélio/química , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Masculino , Ratos , Alanina Transaminase/sangue , Etanol , Aspartato Aminotransferases/sangue , Antrodia/química , Substâncias Protetoras/farmacologia , Malondialdeído/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/tratamento farmacológico , Triglicerídeos/sangue , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Adiponectina/metabolismo , Adiponectina/sangue , Colesterol/sangue , PolyporalesRESUMO
Heavy metal Cd2+ can easily be accumulated by fungi, causing significant stress, with the fungal cell membrane being one of the primary targets. However, the understanding of the mechanisms behind this stress remains limited. This study investigated the changes in membrane lipid molecules of Pleurotus ostreatus mycelia under Cd2+ stress and the antagonistic effect of Ca2+ on this stress. Cd2+ in the growth media significantly inhibited mycelial growth, with increasing intensity at higher concentrations. The addition of Ca2+ mitigated this Cd2+-induced growth inhibition. Lipidomic analysis showed that Cd2+ reduced membrane lipid content and altered lipid composition, while Ca2+ counteracted these changes. The effects of both Cd2+ and Ca2+ on lipids are dose dependent and phosphatidylethanolamine appeared most affected. Cd2+ also caused a phosphatidylcholine/phosphatidylethanolamine ratio increase at high concentrations, but Ca2+ helped maintain normal levels. The acyl chain length and unsaturation of lipids remained unaffected, suggesting Cd2+ doesn't alter acyl chain structure of lipids. These findings suggest that Cd2+ may affect the growth of mycelia by inhibiting the synthesis of membrane lipids, particular the synthesis of phosphatidylethanolamine, providing novel insights into the mechanisms of Cd2+ stress in fungi and the role of Ca2+ in mitigating the stress.
Assuntos
Cádmio , Cálcio , Micélio , Fosfatidiletanolaminas , Pleurotus , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Pleurotus/efeitos dos fármacos , Fosfatidiletanolaminas/metabolismo , Cádmio/metabolismo , Cádmio/farmacologia , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/metabolismo , Cálcio/metabolismo , Lipídeos de Membrana/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Meios de Cultura/químicaRESUMO
Wheat leaf blight caused by Bipolaris sorokiniana is a widespread fungal disease that poses a serious risk to wheat. Biological control without causing environmental pollution is one of the safest and most effective method to control plant diseases. The antagonistic bacterial strain HeN-7 (identified as Bacillus velezensis) was isolated from tobacco leaves cultivated in Henan province, China. The results of different concentrations of cell-free supernatant (CFS) from HeN-7 culture against B. sorokiniana mycelia showed that 20% HeN-7 CFS (v/v) reached the maximum inhibition rate of 96%. In the potted plants control assay, B. velezensis HeN-7 CFS exhibited remarkable biocontrol activity on the wheat infected with B. sorokiniana, the best pot control efficacy was 65% at 20% CFS. The research on the mechanism of action demonstrated that HeN-7 CFS induced the membrane lipid peroxidation in B. sorokiniana, leading to the disruption of cell membrane integrity and resulting in the leakage of cell contents; in addition, the intracellular mitochondrial membrane potential in mycelium dissipated and reactive oxygen species accumulated, thereby inhibiting the growth of B. sorokiniana. These results indicate that B. velezensis HeN-7 is a promising candidate as a biological control agent against Bipolaris sorokiniana infection.
Assuntos
Bacillus , Bipolaris , Nicotiana , Doenças das Plantas , Folhas de Planta , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bacillus/fisiologia , Folhas de Planta/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Triticum/microbiologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , China , Espécies Reativas de Oxigênio/metabolismo , Micélio/crescimento & desenvolvimento , AntibioseRESUMO
Antrodia cinnamomea-derived sulfated polysaccharides (Ac-SPSs) have health benefits, but their yield is low. This study explores a strategy to increase Ac-SPS yield and elucidates the biofunctions of Ac-SPS. For this, A. cinnamomea mycelia were treated with zinc sulfate (ZnSO4) administered at 1, 10, and 100 µM. Firstly, functional assay indicated that ZnSO4 increases the Ac-SPS yield by 20 %-30 % compared with the control treatment. ZnSO4 engenders a population of middle-molecular-weight (~200 kDa) Ac-SPSs. Ac-SPS (ASZ-10) from A. cinnamomea treated with 10 µM ZnSO4 exhibits the best anti-proliferation ability against lung cancer A549 cells. Co-treatment of ASZ-10 does not inhibit lipopolysaccharide-induced inflammation but does induce M1-related markers of macrophage RAW264.7 cells. Secondly, immunomodulatory properties showed that ASZ-10 increases the expression of CD80+ and CD86+ in M-CSF-stimulated bone-marrow-derived macrophages. ASZ-10 induces M1 polarization through up-regulation of the AKT/mTOR pathway as confirmed by AKT and mTOR inhibitors eliminating ASZ-10-induced M1-like markers of macrophages. Through systemic chemical and functional analysis, this study shows that trace amounts (10 µM) of ZnSO4 increase Ac-SPS yield and it reveals that ASZ-10 exhibits anti-cancer activity and acts as a stimulator for M1 macrophages by stimulation of AKT and mTOR.
Assuntos
Macrófagos , Micélio , Polissacarídeos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Sulfato de Zinco , Serina-Treonina Quinases TOR/metabolismo , Sulfato de Zinco/farmacologia , Sulfato de Zinco/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Animais , Micélio/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células RAW 264.7 , Polissacarídeos/farmacologia , Polissacarídeos/química , Sulfatos/química , Sulfatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antrodia/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Células A549 , Polyporales/químicaRESUMO
Polysaccharide fractions from the mycelium of the lion's mane medicinal mushroom Hericium erinaceus BP 16, cultivated on sterile grain substrates (barley, oats, wheat, rice, rye), were isolated and characterized. One percent solutions were prepared from the resulting fractions, mixed with blood, which was then subjected to cold stress at a temperature of 6°C for 3, 5 and 7 d. It has been shown that the fraction of H. erinaceus grown on rye is characterized by a high content of the protein fraction and arabinose monosaccharide and contributes to the preservation of higher phagocytic, bactericidal and antioxidant activity cells throughout the entire period of stress. Polysaccharide fractions of the fungus H. erinaceus, grown on various grain substrates, can serve as an immunomodulatory and antioxidant food additive and provide significant benefits in the daily life of people with stress and reduced immunity.
Assuntos
Antioxidantes , Hericium , Neutrófilos , Antioxidantes/farmacologia , Hericium/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fatores Imunológicos/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Micélio/química , Humanos , Estresse Fisiológico/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/químicaRESUMO
Ganoderma lucidum is a precious fungus with both edible and medicinal values and has a long history of medical use. Triterpenes as the main active components endow G. lucidum with anti-tumor, antioxidant, and other pharmacological activities. The present study endeavors to establish a proficient liquid-state fermentation technology for the enhanced production of triterpenes. In view of the limitations inherent in conventional submerged fermentation and oscillation-static two-stage cultivation, this study established an oscillation-static cycle cultivation process and optimized the cultivation conditions by building an artificial neural network model based on genetic algorithms. The cultivation conditions for the high-yield production of triterpenes were optimized as follows: 2.8 days of oscillation, 7.3 days of static cultivation, 0.2 day of oscillation, and 0.3 day of static cultivation. Under these conditions, the content of triterpenes reached 20.82 mg/g. The yield of triterpenes reached 129.09 mg/L, showing a remarkable increase of 324.78% compared with that of the Z10J0 method. Moreover, the established method shortened the cultivation cycle by 10.6 days. The mycelia cultivated under this regimen exhibited commendable anti-tumor and antioxidant activities. This study not only presents an economical liquid-state fermentation approach but also streamlines the fermentation flow, reduces fermentation duration, and effectively ameliorates drawbacks associated with conventional cultivation methods. In addition, this study gives valuable insights into the scaled application of liquid-state fermentation in the high-yield production of triterpenes, which showcases broad prospects.
Assuntos
Fermentação , Micélio , Reishi , Triterpenos , Triterpenos/metabolismo , Reishi/metabolismo , Reishi/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Redes Neurais de ComputaçãoRESUMO
To study and compare the morphology of the phellinoid Agaricomycetes strains and find other strategies to improve Phellinus spp. growth and metabolism. In this study, the morphological characteristics of four Phellinus igniarius strains (phellinoid Agaricomycetes) were observed under a light microscope. The exudates from these fungi were observed using light microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The exudates were initially transparent with a water-like appearance, and became darker with time at neutral pH. Microscopy of air-dried exudates revealed regular shapes and crystals. Cl- (chloride) and K+ were the two key elements analyzed using EDS. Polyphenol oxidase (POD), catalase (CAT), and laccase activities were detected in mycelia from each of the four Phellinus strains. The K+ content of the three strains was higher than that of the wild strain. Cl- content correlated negatively with that of K+. Laccase activities associated with each mycelia and its corresponding media differed under cold and contaminated conditions.
Assuntos
Basidiomycota , Lacase , Microscopia Eletrônica de Varredura , Micélio , Lacase/metabolismo , Basidiomycota/enzimologia , Basidiomycota/química , Micélio/química , Catalase/metabolismo , Catecol Oxidase/metabolismo , Potássio/metabolismo , Cloretos/metabolismoRESUMO
Edible fungi, healthier for humans and sustainable for the planet, attract unprecedented attention. In the study, the genetically modified Pleurotus ostreatus overexpression phosphoglucomutase (PGM) was constructed. P. ostreatus overexpression PGM (Po::PGM) had 4.96-folds higher expression level of PGM. Po::PGM grew thicker mycelium and more mycelium branches. Additional Ca2+ can inhibit mycelium growth, and cyclic adenosine monophosphate completely inhibited their growth of Po::PGM. Secondly, Overexpression of PGM made P. ostreatus become more sensitive to cell wall disruptors, and caused 12.75 % reduction of ß-1, 3-glucan and 40.53 % increase of chitin in cell wall. In submerged fermentation, the mycelia biomass yield and endopolysaccharide (IPS) production of Po::PGM in basic PDB can reach 11.18 g/l and 2.55 g/l, increasing by 20.86 % and 28.79 %, respectively. Whereas exopolysaccharide (EPS) reduced by 3.28 %. After replacing potato and glucose in PDB by wheat bran, mycelia biomass and EPS production of Po::PGM were all improved. The additional lactose in wheat bran did not only furtherly enhance mycelia biomass yield of Po::PGM to 27.78 g/l by 199.03 %, but IPS production also increased by 277.99 % to 6.07 g/l. The results provided us key ideas and important research directions that at least manipulating the PGM gene could obtain high-efficient use of agricultural wastes producing more fungus-based foods.
Assuntos
Biomassa , Micélio , Pleurotus , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/genética , Micélio/metabolismo , Agricultura/métodos , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Fermentação , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Resíduos , Parede Celular/metabolismo , Parede Celular/genéticaRESUMO
Phylloporia lonicerae is an annual fungus that specifically parasitizes living Lonicera plants, offering significant potential for developing new resource food and medicine. However, wild resources and mycelium production of this fungus is limited, and its anti-tumor active ingredients and mechanisms remain unclear, hampering the development of this fungus. Thus, we optimized the fermentation medium of P. lonicerae and studied the anti-tumor activity of its mycelium. The results indicated that the optimum fermentation medium consisted of 2% sucrose, 0.2% peptone, 0.1% KH2PO4, 0.05% MgSO4·7H2O, 0.16% Lonicera japonica petals, 0.18% P fungal elicitor, and 0.21% L. japonica stem. The biomass reached 7.82 ± 0.41 g/l after 15 days of cultivation in the optimized medium, a 142% increase compared with the potato dextrose broth medium, with a 64% reduction in cultivation time. The intracellular alcohol extract had a higher inhibitory effect on A549 and Eca-109 cells than the intracellular water extract, with half-maximal inhibitory concentration values of 2.42 and 2.92 mg/ml, respectively. Graded extraction of the alcohol extract yielded petroleum ether phase, chloroform phase, ethyl acetate phase, and n-butanol phase. Among them, the petroleum ether phase exhibited a better effect than the positive control, with a half-maximal inhibitory concentration of 113.3 µg/ml. Flow cytometry analysis indicated that petroleum ether components could induce apoptosis of Eca-109 cells, suggesting that this extracted component can be utilized as an anticancer agent in functional foods. This study offers valuable technical support and a theoretical foundation for promoting the comprehensive development and efficient utilization of P. lonicerae.
Assuntos
Antineoplásicos , Meios de Cultura , Fermentação , Lonicera , Micélio , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Humanos , Meios de Cultura/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Lonicera/química , Linhagem Celular Tumoral , Biomassa , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Células A549RESUMO
Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.
Assuntos
Botrytis , Lacase , Oxirredução , Polifenóis , Vitis , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Botrytis/enzimologia , Lacase/metabolismo , Polifenóis/farmacologia , Vitis/microbiologia , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Vinho/microbiologia , Doenças das Plantas/microbiologiaRESUMO
Phellinus igniarius is a commonly used Chinese medicine fungus, and its polysaccharide is a valuable bioactive with antioxidant, antiaging, antitumor activities, etc. However, their bioactivities are influenced by their structural and physicochemical properties. Hence, this research isolated and purified homogeneous water-soluble intracellular polysaccharide (IPSW-1) from P. igniarius mycelia. A coherent study of its structural characteristics, conformation, and antitumor mechanisms was evaluated. The results showed IPSW-1 has no triple helical conformation according to the Congo red test. Based on FT-IR, periodate oxidation, Smith degradation, methylation analysis, 1H and 13C NMR spectroscopy data, and IPSW-1 consisted of α-d-glucopyranose (Glcp). The backbone of IPSW-1 consisted primarily of repeating three (1 â 6)-linked α-d-Glcp and one (1 â 3,4)-linked α-d-Glcp, with one terminal α-d-Glcp as side chains of 3-O-connected to the main chain for every four residues. The IPSW-1 had an inhibitory influence on HepG2 cell proliferation and inhibited the migration and invasion ability by down-regulating the expression levels of MMP-7 and RhoA. Moreover, IPSW-1 could inhibit the lysis of autophagosomes to inhibit autophagy and regulate mitochondrial membrane potential and pro-apoptotic protein Bax, which causes the caspase cascade to promote apoptosis, thereby inhibiting the role of tumor cells. These findings show IPSW-1 holds potential as an innovative functional food.
Assuntos
Antineoplásicos , Apoptose , Basidiomycota , Proliferação de Células , Micélio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Basidiomycota/química , Micélio/química , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Hep G2 , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificaçãoRESUMO
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Assuntos
Aflatoxina B1 , Antraquinonas , Aspergillus flavus , Espécies Reativas de Oxigênio , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Antraquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Aflatoxina B1/biossíntese , Aflatoxina B1/toxicidade , Metabolismo Energético/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Antifúngicos/farmacologiaRESUMO
Mycelium-based leather substitutes with a three-dimensional reticulated structure have attracted attention owing to the negative environmental impacts of natural and synthetic leather. This study utilised Ganoderma lucidum mycelium to prepare a mycelium-based leather substitute with zinc cross-linking (MF-Zn) and evaluated its physicochemical properties and sensory performance; the conventional Cr3+ tanning method was used as reference. Results demonstrated that Zn2+ and Cr3+ formed cross-links with the -OH and -NHOCH3 groups in the polysaccharides of chitin, while Zn2+ selectively bonded to a fraction of -NH2 groups in cystine and phenylalanine. The mycelium-based leather substitute with Zn cross-linking exhibited impressive tensile strength and tear strength of 7.0 MPa and 16.4 kN/m, respectively, while demonstrating desirable organoleptic properties. The free radical-scavenging capacity of MF-Zn was assessed, revealing a DPPH radical and hydroxyl radical scavenging rates of 39.4% and 52.7%, respectively. By successfully investigating the cross-linking mechanism of mycelial fibres with Zn2+ and obtaining the stabilised mycelium-based leather substitute, this study establishes a fundamental basis for the development of sustainable leather substitutes, meeting the requirements and facilitating significant advancements in low-carbon leather substitute production.
Assuntos
Quitina , Micélio , Zinco , Quitina/química , Micélio/química , Zinco/química , Resistência à Tração , Reagentes de Ligações Cruzadas/química , Sequestradores de Radicais Livres/química , Reishi/químicaRESUMO
Botrytis cinerea is the phytopathogenic fungus responsible for the gray mold disease that affects crops worldwide. Essential oils (EOs) have emerged as a sustainable tool to reduce the adverse impact of synthetic fungicides. Nevertheless, the scarce information about the physiological mechanism action and the limitations to applying EOs has restricted its use. This study focused on elucidating the physiological action mechanisms and prospection of lipid nanoparticles to apply EO of Mentha piperita. The results showed that the EO of M. piperita at 500, 700, and 900⯵Lâ¯L-1 inhibited the mycelial growth at 100â¯%. The inhibition of spore germination of B. cinerea reached 31.43â¯% at 900⯵Lâ¯L-1. The EO of M. piperita decreased the dry weight and increased pH, electrical conductivity, and cellular material absorbing OD260â¯nm of cultures of B. cinerea. The fluorescence technique revealed that EO reduced hyphae width, mitochondrial activity, and viability, and increased ROS production. The formulation of EO of M. piperita loaded- solid lipid nanoparticles (SLN) at 500, 700, and 900⯵Lâ¯L-1 had particle size â¼ 200â¯nm, polydispersity index < 0.2, and stability. Also, the thermogravimetric analysis indicated that the EO of M. piperita-loaded SLN has great thermal stability at 50 °C. EO of M. piperita-loaded SLN reduced the mycelial growth of B. cinerea by 70â¯%, while SLN formulation (without EO) reached 42â¯% inhibition. These results supported that EO of M. piperita-loaded SLN is a sustainable tool for reducing the disease produced by B. cinerea.
Assuntos
Botrytis , Mentha piperita , Nanopartículas , Óleos Voláteis , Esporos Fúngicos , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Nanopartículas/química , Mentha piperita/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Lipídeos/química , Lipídeos/farmacologia , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Óleos de Plantas/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , LipossomosRESUMO
To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 µm, D10 > 200 µm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.
Assuntos
Micélio , Esgotos , Águas Residuárias , Esgotos/microbiologia , Aerobiose , Águas Residuárias/microbiologia , Águas Residuárias/química , Salinidade , Cladosporium , Reatores BiológicosRESUMO
This study evaluated the effects of supplementation with Antrodia cinnamomea mycelium by-product (ACBP) on growth performance and immune response in weaning piglets. Total available content and antioxidant capacity of ACBP were determined. Ninety-six black pigs were randomly distributed to 24 pens. Study compared four groups which were supplemented with ACBP at 0%, 2.5%, 5%, or 10% for 6 weeks after weaning at 4 weeks. Results showed that ACBP on total phenolic, total flavonoid, and total triterpenoids contents were 13.68 mg GAE/g DW, 1.67 µg QE/g DW, and 15.6 mg/g, respectively. Weaning piglets fed 2.5% ACBP showed a significant decreased body weight gain compared with those supplemented with 5% ACBP, 10% ACBP, and control groups. Results showed that all ACBP groups increased the villi height of jejunum significantly. Incidence of diarrhea in 11 weeks with supplementation with 5% and 10% ACBP diets were lower than in control group. The 10% ACBP group showed significantly lower expression of immune response genes (IL-1ß, IL-6, IL-8, TNF-α, and IFN-γ) than the 2.5% and 5% ACBP groups. Based on results, dietary supplementation with 10% ACBP did not significantly affect body weight but could decrease piglet diarrhea condition and expression of IL-1ß and IL-6 genes.
Assuntos
Ração Animal , Antioxidantes , Dieta , Suplementos Nutricionais , Micélio , Desmame , Aumento de Peso , Animais , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Aumento de Peso/efeitos dos fármacos , Dieta/veterinária , Antioxidantes/metabolismo , Diarreia/veterinária , Triterpenos/farmacologia , Triterpenos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Citocinas/metabolismo , Jejuno/metabolismo , Fenóis/análise , Fenômenos Fisiológicos da Nutrição Animal , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Polyporales/químicaRESUMO
BACKGROUND: Rhizoctonia solani is an important plant pathogen worldwide, and causes serious tobacco target spot in tobacco in the last five years. This research studied the biological characteristics of four different anastomosis groups strains (AG-3, AG-5, AG-6, AG-1-IB) of R. solani from tobacco. Using metabolic phenotype technology analyzed the metabolic phenotype differences of these strains. RESULTS: The results showed that the suitable temperature for mycelial growth of four anastomosis group strains were from 20 to 30oC, and for sclerotia formation were from 20 to 25oC. Under different lighting conditions, R. solani AG-6 strains produced the most sclerotium, followed by R. solani AG-3, R. solani AG-5 and R. solani AG-1-IB. All strains had strong oligotrophic survivability, and can grow on water agar medium without any nitrutions. They exhibited three types of sclerotia distribution form, including dispersed type (R. solani AG-5 and AG-6), peripheral type (R. solani AG-1-IB), and central type (R. solani AG-3). They all presented different pathogenicities in tobacco leaves, with the most virulent was noted by R. solani AG-6, followed by R. solani AG-5 and AG-1-IB, finally was R. solani AG-3. R. solani AG-1-IB strains firstly present symptom after inoculation. Metabolic fingerprints of four anastomosis groups were different to each other. R. solani AG-3, AG-6, AG-5 and AG-1-IB strains efficiently metabolized 88, 94, 71 and 92 carbon substrates, respectively. Nitrogen substrates of amino acids and peptides were the significant utilization patterns for R. solani AG-3. R. solani AG-3 and AG-6 showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 8% sodium lactate. Four anastomosis groups all showed active metabolism in environments with pH values from 4 to 6 and exhibited decarboxylase activities. CONCLUSIONS: The biological characteristics of different anastomosis group strains varies, and there were significant differences in the metabolic phenotype characteristics of different anastomosis group strains towards carbon source, nitrogen source, pH, and osmotic pressure.
Assuntos
Nicotiana , Fenótipo , Doenças das Plantas , Rhizoctonia , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Temperatura , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Folhas de Planta/microbiologia , VirulênciaRESUMO
Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: ⢠Two Fusarium solani strains are analyzed for their surfactant production. ⢠A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. ⢠An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.
Assuntos
Proteínas Fúngicas , Fusarium , Tensoativos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoativos/metabolismo , Tensoativos/química , Emulsificantes/metabolismo , Emulsificantes/química , Microbiologia do Solo , Emulsões/química , Emulsões/metabolismo , Tensão Superficial , Cisteína/metabolismo , Cisteína/química , Azeite de Oliva/metabolismo , Azeite de Oliva/química , Micélio/metabolismoRESUMO
Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.
Assuntos
Biodegradação Ambiental , Reatores Biológicos , Corantes , Oryza , Oryza/microbiologia , Corantes/metabolismo , Corantes/química , Reatores Biológicos/microbiologia , Lacase/metabolismo , Biomassa , Violeta Genciana/metabolismo , Violeta Genciana/química , Trametes/metabolismo , Trametes/enzimologia , Micélio/metabolismo , Polyporaceae/metabolismoRESUMO
Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.