Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.768
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719882

RESUMO

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Assuntos
Envelhecimento , MicroRNAs , Neuroglia , Fatores de Transcrição , Humanos , Neuroglia/metabolismo , Neuroglia/citologia , Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
2.
Clin Respir J ; 18(5): e13765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721812

RESUMO

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Movimento Celular/genética , Masculino
3.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722283

RESUMO

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Assuntos
Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Movimento Celular , Proliferação de Células , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Ferroptose/genética , Proliferação de Células/genética , Movimento Celular/genética , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Células HeLa , RNA Longo não Codificante/genética , RNA Endógeno Competitivo
4.
Elife ; 132024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722677

RESUMO

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Assuntos
Diferenciação Celular , Regulação para Baixo , MicroRNAs , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Humanos , Células Th17/imunologia , Células Th17/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema/genética , Enfisema/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/metabolismo , Masculino , Interleucina-17/metabolismo , Interleucina-17/genética , Feminino
5.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725842

RESUMO

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Estresse Oxidativo , Espécies Reativas de Oxigênio , Complexo Correpressor Histona Desacetilase e Sin3 , Proteínas Quinases p38 Ativadas por Mitógeno , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Tetracloreto de Carbono
6.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Masculino , Exossomos/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Próstata/patologia , Próstata/metabolismo , Dor Pélvica , Inflamação/genética , Inflamação/patologia , Camundongos , Sistema de Sinalização das MAP Quinases
7.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725030

RESUMO

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Camundongos Nus , Apoptose
8.
J Transl Med ; 22(1): 440, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720358

RESUMO

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Assuntos
Fibroblastos , Fibrose , Cirurgia Filtrante , Glaucoma , MicroRNAs , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Glaucoma/patologia , Glaucoma/genética , Cirurgia Filtrante/efeitos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Proteína Smad4/metabolismo , Proteína Smad4/genética , NF-kappa B/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Regulação da Expressão Gênica
9.
J Transl Med ; 22(1): 439, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720389

RESUMO

Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Subunidade gama Comum de Receptores de Interleucina , MicroRNAs , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequência de Bases , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Células HEK293 , Imunoterapia , Subunidade gama Comum de Receptores de Interleucina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
10.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725341

RESUMO

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Assuntos
Enterovirus Humano B , Exossomos , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Miócitos Cardíacos , Transdução de Sinais , Proteína Smad2 , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Animais , Humanos , Camundongos , Proteína Smad2/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Enterovirus Humano B/fisiologia , Miócitos Cardíacos/metabolismo , Cordão Umbilical/citologia , Infecções por Coxsackievirus/metabolismo , Masculino , Miocardite/metabolismo , Miocardite/virologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731908

RESUMO

In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.


Assuntos
Fibrilação Atrial , Biomarcadores , Ablação por Cateter , MicroRNAs , Redução de Peso , Fibrilação Atrial/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/etiologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ablação por Cateter/métodos , Recidiva , Remodelamento Atrial , Animais , Obesidade/metabolismo , Obesidade/complicações
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731953

RESUMO

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Assuntos
Apoptose , Berberina , Caquexia , Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Berberina/farmacologia , Ratos , Caquexia/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos Sprague-Dawley , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
14.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38701688

RESUMO

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


Assuntos
RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Animais , RNA/metabolismo , RNA/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo
15.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745302

RESUMO

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Assuntos
Cisplatino , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias Ovarianas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
16.
Biol Res ; 57(1): 27, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745315

RESUMO

BACKGROUND: Aberrant gluconeogenesis is considered among primary drivers of hyperglycemia under insulin resistant conditions, with multiple studies pointing towards epigenetic dysregulation. Here we examine the role of miR-721 and effect of epigenetic modulator laccaic acid on the regulation of gluconeogenesis under high fat diet induced insulin resistance. RESULTS: Reanalysis of miRNA profiling data of high-fat diet-induced insulin-resistant mice model, GEO dataset (GSE94799) revealed a significant upregulation of miR-721, which was further validated in invivo insulin resistance in mice and invitro insulin resistance in Hepa 1-6 cells. Interestingly, miR-721 mimic increased glucose production in Hepa 1-6 cells via activation of FOXO1 regulated gluconeogenic program. Concomitantly, inhibition of miR-721 reduced glucose production in palmitate induced insulin resistant Hepa 1-6 cells by blunting the FOXO1 induced gluconeogenesis. Intriguingly, at epigenetic level, enrichment of the transcriptional activation mark H3K36me2 got decreased around the FOXO1 promoter. Additionally, identifying targets of miR-721 using miRDB.org showed H3K36me2 demethylase KDM2A as a potential target. Notably, miR-721 inhibitor enhanced KDM2A expression which correlated with H3K36me2 enrichment around FOXO1 promoter and the downstream activation of the gluconeogenic pathway. Furthermore, inhibition of miR-721 in high-fat diet-induced insulin-resistant mice resulted in restoration of KDM2A levels, concomitantly reducing FOXO1, PCK1, and G6PC expression, attenuating gluconeogenesis, hyperglycemia, and improving glucose tolerance. Interestingly, the epigenetic modulator laccaic acid also reduced the hepatic miR-721 expression and improved KDM2A expression, supporting our earlier report that laccaic acid attenuates insulin resistance by reducing gluconeogenesis. CONCLUSION: Our study unveils the role of miR-721 in regulating gluconeogenesis through KDM2A and FOXO1 under insulin resistance, pointing towards significant clinical and therapeutic implications for metabolic disorders. Moreover, the promising impact of laccaic acid highlights its potential as a valuable intervention in managing insulin resistance-associated metabolic diseases.


Assuntos
Dieta Hiperlipídica , Epigênese Genética , Gluconeogênese , Resistência à Insulina , Histona Desmetilases com o Domínio Jumonji , Camundongos Endogâmicos C57BL , MicroRNAs , Animais , Resistência à Insulina/fisiologia , Gluconeogênese/genética , Gluconeogênese/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
17.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724827

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Assuntos
Regeneração Óssea , Diferenciação Celular , Dioxigenases , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Ratos Sprague-Dawley , Crânio , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Ratos , Crânio/patologia , Crânio/metabolismo , Feminino , Regeneração Óssea/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Proliferação de Células/genética , Células HEK293
18.
Stem Cell Res Ther ; 15(1): 128, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693576

RESUMO

BACKGROUND: Testicular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy. METHODS: In this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing. RESULTS: For the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness. CONCLUSIONS: This study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteína Homeobox Nanog , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Humanos , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/genética , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Cisplatino/farmacologia
19.
Stem Cell Res Ther ; 15(1): 129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693588

RESUMO

BACKGROUND: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS: Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS: We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION: EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.


Assuntos
Diferenciação Celular , Proliferação de Células , Endométrio , Exossomos , Fibroblastos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Exossomos/metabolismo , Endométrio/metabolismo , Endométrio/citologia , Fibroblastos/metabolismo , Fibroblastos/citologia , Regeneração/genética , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia
20.
J Cell Mol Med ; 28(9): e18351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693854

RESUMO

Coronary artery bypass grafting (CABG) is an effective treatment for coronary heart disease, with vascular transplantation as the key procedure. Intimal hyperplasia (IH) gradually leads to vascular stenosis, seriously affecting the curative effect of CABG. Mesenchymal stem cells (MSCs) were used to alleviate IH, but the effect was not satisfactory. This work aimed to investigate whether lncRNA MIR155HG could improve the efficacy of MSCs in the treatment of IH and to elucidate the role of the competing endogenous RNA (ceRNA). The effect of MIR155HG on MSCs function was investigated, while the proteins involved were assessed. IH was detected by HE and Van Gieson staining. miRNAs as the target of lncRNA were selected by bioinformatics analysis. qRT-PCR and dual-luciferase reporter assay were performed to verify the binding sites of lncRNA-miRNA. The apoptosis, Elisa and tube formation assay revealed the effect of ceRNA on the endothelial protection of MIR155HG-MSCs. We observed that MIR155HG improved the effect of MSCs on IH by promoting viability and migration. MIR155HG worked as a sponge for miR-205. MIR155HG/miR-205 significantly improved the function of MSCs, avoiding apoptosis and inducing angiogenesis. The improved therapeutic effects of MSCs on IH might be due to the ceRNA role of MIR155HG/miR-205.


Assuntos
Apoptose , Hiperplasia , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , RNA Longo não Codificante/genética , Apoptose/genética , Movimento Celular/genética , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Túnica Íntima/patologia , Túnica Íntima/metabolismo , Regulação da Expressão Gênica , Proliferação de Células/genética , Masculino , Sobrevivência Celular/genética , RNA Endógeno Competitivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA