Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 228: 105650, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33035767

RESUMO

Micro(nano)plastics (MPs/NPs) are already present as contaminants in the natural environment globally and have been shown to be difficult to degrade, resulting in the potential for ecological damage and public health concerns. However, the adverse effects of exposure to MPs/NPs by aquatic organisms, especially freshwater microalgae, remains unclear. In the present study, the growth, physiology and transcriptome of the freshwater microalgae Euglena gracilis were comprehensively analyzed following exposure to 1 mg/L of polystyrene (PS) microbeads (5 µm PS-MPs and 100 nm PS-NPs), 0.5 mg/L cadmium (Cd), or a mixture of PS microbeads and Cd for 96 h. Results showed that the toxicity of PS-MPs to microalgae was greater than PS-NPs, inducing increased growth inhibition, oxidative damage and decreased photosynthesis pigment concentrations. PS-MPs alone or in combination with Cd caused cavitation within microalgal cells, as well as increasing the number and volume of vacuoles. The combined exposure toxicity test showed that a combination of Cd + PS-NPs was more toxic than Cd + PS-MPs, which may be explained by the transcriptomic analysis results. Differentially expressed genes (DEGs) in the Cd + PS-NPs group were mainly enriched in metabolism-related pathways, suggesting that algal metabolism was hindered, resulting in aggravation of toxicity. The reduced toxicity induced by Cd + PS-MPs may indicate a response to resist external stress processes. In addition, no adsorption of 0.5 mg/L Cd to 1 mg/L PS microbeads was observed, suggesting that adsorption of MPs/NPs and Cd was not the key factor determining the combined toxicity effects in this study.


Assuntos
Cádmio/toxicidade , Exposição Ambiental , Euglena gracilis/genética , Euglena gracilis/fisiologia , Microalgas/genética , Microesferas , Poliestirenos/toxicidade , Transcrição Gênica/efeitos dos fármacos , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Euglena gracilis/efeitos dos fármacos , Euglena gracilis/ultraestrutura , Perfilação da Expressão Gênica , Ontologia Genética , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Microalgas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Biochem J ; 477(19): 3729-3741, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936286

RESUMO

Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.


Assuntos
Biomassa , Chlorella/crescimento & desenvolvimento , Cobre/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Microbiologia da Água , Chlorella/ultraestrutura , Ecossistema , Microalgas/ultraestrutura
3.
Aquat Toxicol ; 227: 105588, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861020

RESUMO

The pollution of polybrominated diphenyl ethers (PBDEs) is becoming a pressing environmental problem in aquatic environments, and its threat to aquatic organism has received much attention. In this study, Phaeodactylum tricornutum was treated with 0.8 and 4 mg L-1 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47), the most toxic PBDEs, for 96 h. BDE-47 inhibited cell growth in a time- and concentration-dependent manner. Observation of cell ultrastructure suggested the damage of the chloroplasts morphology. BDE-47 also decreased the chlorophyll content and the oxygen evolution rate, and altered the performance of photosystems. Transcriptomic analysis revealed differential expression of 62 genes related to photosynthesis in BDE-47 treatments (4 mg L-1) and transcription suppression of 58 genes involved in chlorophyll synthesis, antenna proteins, oxygen evolution, electron transport and downstream carbon fixation, implying potential toxicity targets in cells. Additionally, the levels of reactive oxygen species (ROS) and lipid peroxidation increased under BDE-47 stress and were positively correlated with photosynthesis inhibition. Pretreatment with the ROS scavenger N-acetyl-l-cysteine reduced the extent of inhibition, suggesting that ROS was responsible for these effects. Another experiment with the electron transport chain inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea showed that the generation of ROS was partially blocked, primarily indicating that photosynthetic inhibition induced by BDE-47 contributed to ROS overproduction. Thus, BDE-47 inhibited the photosynthesis by down-regulating the gene expression. This change stimulated ROS production, further leading to chloroplast membrane damage to aggravate this inhibition via a feedback loop. These effects of BDE-47 had adverse outcomes on the entire physiological state and the population growth of the microalgae.


Assuntos
Diatomáceas/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Acetilcisteína/farmacologia , Clorofila/metabolismo , Diatomáceas/metabolismo , Diatomáceas/ultraestrutura , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Microalgas/metabolismo , Microalgas/ultraestrutura , Modelos Teóricos , Fotossíntese/genética
4.
Mycopathologia ; 185(5): 747-754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401758

RESUMO

The genus Prototheca consists of achlorophyllic algae that are ubiquitous in the environment and animal intestines. However, this organism has forfeited its photosynthetic ability and switched to parasitism. In 1894, Krüger described two microorganisms isolated in Germany from mucous flux of Tilia and Ulmus spp., namely Prototheca moriformis and P. zopfii. Based on their yeast-like colony morphology, Krüger classified these organisms as fungi. The genus is now included within the class Trebouxiophyceae, order Chlorellales, and family Chlorellaceae. Historically, protothecosis and infections caused by green algae have been studied in the field of medical mycology. Prototheca spp. have been found to colonize human skin, fingernails, the respiratory tract, and digestive system. Although human infection by Prototheca is considered rare, an increase in infections has been noted among immunosuppressed patients, those on corticosteroid treatment, or both. Moreover, the first human outbreak of protothecal algaemia and sepsis was recently reported in a tertiary care chemotherapy oncology unit in 2018. Prototheca is also a causative pathogen of bovine disease. Prototheca zopfii and P. blaschkeae are associated with bovine mastitis, which causes a reduction in milk production and secretion of thin, watery milk containing white flakes. Economic losses are incurred either directly via reduced milk production and premature culling of affected animals or indirectly as a result of treatment and veterinary care expenses. Thus, knowledge of this fungal-like pathogen is essential in human and veterinary medicine. In this mini-review, I briefly introduce human and animal protothecoses.


Assuntos
Prototheca , Dermatopatias Infecciosas , Corticosteroides/efeitos adversos , Animais , Antifúngicos/uso terapêutico , Doenças do Gato , Gatos , Bovinos , Doenças do Cão , Cães , Resistência a Medicamentos , Humanos , Hospedeiro Imunocomprometido , Infecções/tratamento farmacológico , Infecções/microbiologia , Infecções/veterinária , Mastite Bovina/microbiologia , Microalgas/classificação , Microalgas/patogenicidade , Microalgas/ultraestrutura , Mortalidade , Prototheca/classificação , Prototheca/isolamento & purificação , Prototheca/patogenicidade , Prototheca/ultraestrutura , Fatores de Risco , Pele/microbiologia , Pele/patologia , Dermatopatias Infecciosas/tratamento farmacológico , Dermatopatias Infecciosas/patologia , Dermatopatias Infecciosas/veterinária
5.
Aquat Toxicol ; 207: 153-162, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572175

RESUMO

Effects on short-term (6 h) and long-term (96 h) exposure to cadmium (Cd) at 0.1, 0.5 and 2.5 mg/L in microalga Dunaliella salina were assessed using both physiological end points and gene expression analysis. Different physiological responses between the short-term and long-term exposures were observed. Upon 6 h after Cd exposure, lipid peroxidation and cell ultrastructure remained unchanged, while contents of chlorophyll a, chlorophyll b, carotenoids were increased at 0.5 and 2.5 mg/L Cd. Contrarily, 96 h after Cd exposure, lipid peroxidation levels were increased, while pigments content was decreased, and damaged cell ultrastructure was apparent at 2.5 mg/L Cd. Activities of antioxidant enzymes (APX, SOD, GST, GPX, and GR) changed differently both at 6 h and 96 h after Cd exposure. Upon 6 h after Cd exposure, SOD and GST activity increased at all three doses, GR and GPX activity increased at 0.5 mg/L Cd while APX activity increased at 0.1 mg/L Cd. Contrarily, 96 h after Cd exposure, activities of all the antioxidant enzymes increased both at 0.1 and 0.5 mg/L Cd; but there was a decrease in SOD and GR activity in D. salina exposed to 2.5 mg/L Cd. RNA-seq and qRT-PCR analyses indicated that genes involved in ROS-scavenge, photosystem, and ribosome functions were differentially expressed. The most significantly enriched function was the ribosome, in which more than 30 ribosome genes were up-regulated at 6 h but down-regulated at 96 h after Cd exposure at 2.5 mg/L. Our study indicated for the first time that genes encoding ribosomal proteins are the primary target for Cd in microalgae, which allowed gaining new insights into temporal dynamics of toxicity and adaptive response pathways in microalgae exposed to metals.


Assuntos
Cádmio/toxicidade , Clorófitas/genética , Clorófitas/fisiologia , Sequestradores de Radicais Livres/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Transcrição Gênica , Antioxidantes/metabolismo , Clorófitas/efeitos dos fármacos , Clorófitas/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Microalgas/ultraestrutura , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
6.
Mar Drugs ; 14(9)2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618070

RESUMO

Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.


Assuntos
Biomassa , Clorofila/isolamento & purificação , Microalgas/química , Óleos/química , Saponinas/química , Biocombustíveis , Carotenoides/química , Clorofilídeos/química , Ácidos Graxos/química , Lipídeos/química , Lipídeos/isolamento & purificação , Microalgas/ultraestrutura , Scenedesmus/química
7.
Aquat Toxicol ; 169: 27-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26513220

RESUMO

In recent years, the release of chemical pollutants to water bodies has increased due to anthropogenic activities. Ni(2+) is an essential metal that causes damage to aquatic biota at high concentrations. Phytoplankton are photosynthesizing microscopic organisms that constitute a fundamental community in aquatic environments because they are primary producers that sustain the aquatic food web. Nickel toxicity has not been characterized in all of the affected levels of biological organization. For this reason, the present study evaluated the toxic effects of nickel on the growth of a primary producer, the green microalga Ankistrodesmus falcatus, and on its biochemical, enzymatic, and structural levels. The IC50 (96h) was determined for Ni(2+). Based on this result, five concentrations were determined for additional tests, in which cell density was evaluated daily. At the end of the assay, pigments and six biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD]), and macromolecules (proteins, carbohydrates and lipids), were quantified; the integrated biomarker response (IBR) was determined also. The microalgae were observed by SEM and TEM. Population growth was affected starting at 7.5 µg L(-1) (0.028 µM), and at 120 µg L(-1) (0.450 µM), growth was inhibited completely; the determined IC50 was 17 µg L(-1). Exposure to nickel reduced the concentration of pigments, decreased the content of all of the macromolecules, inhibited of SOD activity, and increased CAT and GPx activities. The IBR revealed that Ni(2+) increased the antioxidant response and diminished the macromolecules concentration. A. falcatus was affected by nickel at very low concentrations; negative effects were observed at the macromolecular, enzymatic, cytoplasmic, and morphological levels, as well as in population growth. Ni(2+) toxicity could result in environmental impacts with consequences on the entire aquatic community. Current regulations should be revised to protect primary producers.


Assuntos
Antioxidantes/metabolismo , Clorófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Catalase/metabolismo , Clorófitas/enzimologia , Clorófitas/metabolismo , Clorófitas/ultraestrutura , Glutationa Peroxidase/metabolismo , Microalgas/enzimologia , Microalgas/metabolismo , Microalgas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Superóxido Dismutase/metabolismo
8.
Mar Drugs ; 12(7): 3892-903, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24983635

RESUMO

Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1) from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER) due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.


Assuntos
Diatomáceas/metabolismo , Retículo Endoplasmático/metabolismo , Microalgas/ultraestrutura , Organelas/química , Sinais Direcionadores de Proteínas , Proteínas/química , Biocombustíveis , Proteínas de Fluorescência Verde/metabolismo , Metabolismo dos Lipídeos
9.
Metallomics ; 6(2): 316-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24394991

RESUMO

The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the nucleus at high concentration. Exposure to low concentrations of cobalt or silver did not alter the localization nor the concentration of endogenous elements within the cells. To our knowledge, this is the first report on element co-localization and segregation at the sub-cellular level in micro-algae by means of synchrotron nano X-ray fluorescence spectroscopy.


Assuntos
Clorófitas/metabolismo , Cobalto/metabolismo , Microalgas/metabolismo , Nanopartículas/química , Prata/metabolismo , Espectrometria por Raios X/métodos , Síncrotrons , Clorófitas/ultraestrutura , Ferro/metabolismo , Microalgas/ultraestrutura , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Análise de Componente Principal , Espectrofotometria Atômica , Frações Subcelulares/metabolismo
10.
Bioresour Technol ; 127: 494-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069615

RESUMO

In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively.


Assuntos
Biocombustíveis/análise , Carvão Vegetal/síntese química , Temperatura Alta , Microalgas/química , Anaerobiose , Carvão Vegetal/química , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas , Microalgas/ultraestrutura , Microscopia Eletrônica de Varredura , Nitrogênio/análise , Fósforo/análise , Potássio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA