Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Redox Rep ; 29(1): 2377870, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39010730

RESUMO

OBJECTIVES: To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS: Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS: We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS: Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.


Assuntos
Mitofagia , Estresse Oxidativo , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Adulto , Microambiente Celular/fisiologia
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216117

RESUMO

Stem cells (SC) are largely known for their potential to restore damaged tissue through various known mechanisms. Among these mechanisms is their ability to transfer healthy mitochondria to injured cells to rescue them. This mitochondrial transfer plays a critical role in the healing process. To determine the optimal parameters for inducing mitochondrial transfer between cells, we assessed mitochondrial transfer as a function of seeding density and in two-dimensional (2D) and semi three-dimensional (2.5D) culture models. Since mitochondrial transfer can occur through direct contact or secretion, the 2.5D culture model utilizes collagen to provide cells with a more physiologically relevant extracellular matrix and offers a more realistic representation of cell attachment and movement. Results demonstrate the dependence of mitochondrial transfer on cell density and the distance between donor and recipient cell. Furthermore, the differences found between the transfer of mitochondria in 2D and 2.5D microenvironments suggest an optimal mode of mitochondria transport. Using these parameters, we explored the effects on mitochondrial transfer between SCs and tumorigenic cells. HEK293 (HEK) is an immortalized cell line derived from human embryonic kidney cells which grow rapidly and form tumors in culture. Consequently, HEKs have been deemed tumorigenic and are widely used in cancer research. We observed mitochondrial transfer from SCs to HEK cells at significantly higher transfer rates when compared to a SC-SC co-culture system. Interestingly, our results also revealed an increase in the migratory ability of HEK cells when cultured with SCs. As more researchers find co-localization of stem cells and tumors in the human body, these results could be used to better understand their biological relationship and lead to enhanced therapeutic applications.


Assuntos
Tecido Adiposo/fisiologia , Microambiente Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/fisiologia , Adipócitos/fisiologia , Carcinogênese/patologia , Contagem de Células/métodos , Linhagem Celular , Técnicas de Cocultura/métodos , Células HEK293 , Humanos
3.
J Immunol ; 208(5): 1292-1304, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131868

RESUMO

Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/fisiologia , Fígado/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Animais , Capilares/citologia , Microambiente Celular/fisiologia , Fígado/irrigação sanguínea , Malária/patologia , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologia , Vacinação
4.
Lipids Health Dis ; 21(1): 5, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996476

RESUMO

Recent advances in society have resulted in the emergence of both hyperlipidemia and obesity as life-threatening conditions in people with implications for various types of diseases, such as cardiovascular diseases and cancer. This is further complicated by a global rise in the aging population, especially menopausal women, who mostly suffer from overweight and bone loss simultaneously. Interestingly, clinical observations in these women suggest that osteoarthritis may be linked to a higher body mass index (BMI), which has led many to believe that there may be some degree of bone dysfunction associated with conditions such as obesity. It is also common practice in many outpatient settings to encourage patients to control their BMI and lose weight in an attempt to mitigate mechanical stress and thus reduce bone pain and joint dysfunction. Together, studies show that bone is not only a mechanical organ but also a critical component of metabolism, and various endocrine functions, such as calcium metabolism. Numerous studies have demonstrated a relationship between metabolic dysfunction in bone and abnormal lipid metabolism. Previous studies have also regarded obesity as a metabolic disorder. However, the relationship between lipid metabolism and bone metabolism has not been fully elucidated. In this narrative review, the data describing the close relationship between bone and lipid metabolism was summarized and the impact on both the normal physiology and pathophysiology of these tissues was discussed at both the molecular and cellular levels.


Assuntos
Osso e Ossos/metabolismo , Metabolismo dos Lipídeos , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/fisiopatologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/fisiopatologia , Osso e Ossos/fisiologia , Osso e Ossos/fisiopatologia , Microambiente Celular/fisiologia , Colesterol/metabolismo , Colesterol/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Osteoporose/metabolismo
5.
Diabetes ; 71(1): 23-30, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995348

RESUMO

Age-related immunosenescence, defined as an increase in inflammaging and the decline of the immune system, leads to tissue dysfunction and increased risk for metabolic disease. The elderly population is expanding, leading to a heightened need for therapeutics to improve health span. With age, many alterations of the immune system are observed, including shifts in the tissue-resident immune cells, increased expression of inflammatory factors, and the accumulation of senescent cells, all of which are responsible for a chronic inflammatory loop. Adipose tissue and the immune cell activation within are of particular interest for their well-known roles in metabolic disease. Recent literature reveals that adipose tissue is an organ in which signs of initial aging occur, including immune cell activation. Aged adipose tissue reveals changes in many innate and adaptive immune cell subsets, revealing a complex interaction that contributes to inflammation, increased senescence, impaired catecholamine-induced lipolysis, and impaired insulin sensitivity. Here, we will describe current knowledge surrounding age-related changes in immune cells while relating those findings to recent discoveries regarding immune cells in aged adipose tissue.


Assuntos
Tecido Adiposo/patologia , Microambiente Celular/fisiologia , Senescência Celular/fisiologia , Inflamação/patologia , Leucócitos/fisiologia , Tecido Adiposo/metabolismo , Idoso , Envelhecimento/sangue , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Microambiente Celular/imunologia , Feminino , Humanos , Imunossenescência/fisiologia , Inflamação/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos
6.
PLoS One ; 17(1): e0262532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085314

RESUMO

This study aimed to report the effects of different doses of ionizing radiation on inflammatory and repair stage of human skin graft adherence in Nude mice wounds. Animals were divided into transplanted with irradiated human skin grafts (IHSG) at 25 and 50 kGy (IHSG 25 kGy; IHSG 50 kGy) and non-IHSG and euthanized on the 3rd, 7th and 21st days after the surgery, by gross and microscopic changes, immunostaining for human type I collagen (Col I) and mouse Col I and Col III and inflammatory cells. We found an effectiveness of human split-thickness graft adherence in mice transplanted with IHSG 25 kGy, as well decrease in dermo-epidermal necrosis and neutrophils, lower loss of skin thickness, epithelization and neo-vascularization. Day 21 post-transplantation with IHSG 25 kGy was observed a well-preserved human skin in the border of the graft, a prominent granulation tissue in an organization by proliferated fibroblasts, Col III deposition and increased B-cells and macrophages. A complete adherence of human skin graft occurred with IHSG 25 kGy. We suggest that the ionizing radiation at 25 kGy mediates inflammation and the repair stage of human skin graft adherence in murine model, thus emerging as a potential tool in healing cutaneous wounds.


Assuntos
Microambiente Celular/fisiologia , Colágeno Tipo I/metabolismo , Pele/metabolismo , Pele/fisiopatologia , Aderências Teciduais/metabolismo , Aderências Teciduais/fisiopatologia , Cicatrização/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Reepitelização/fisiologia , Transplante de Pele/métodos , Pele Artificial
7.
Front Immunol ; 12: 757827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925328

RESUMO

Kingella kingae is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between K. kingae and bone loss, we have assessed whether infection per se or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis. For that purpose, we examined both the direct effect of K. kingae and the immune-mediated mechanism involved in K. kingae-infected macrophage-induced osteoclastogenesis. Our results indicate that osteoclastogenesis is stimulated by K. kingae infection directly and indirectly by fueling a potent pro-inflammatory response that drives macrophages to undergo functional osteoclasts via TNF-α and IL-1ß induction. Such osteoclastogenic capability of K. kingae is counteracted by their outer membrane vesicles (OMV) in a concentration-dependent manner. In conclusion, this model allowed elucidating the interplay between the K. kingae and their OMV to modulate osteoclastogenesis from exposed macrophages, thus contributing to the modulation in joint and bone damage.


Assuntos
Microambiente Celular/fisiologia , Infecções por Neisseriaceae/imunologia , Infecções por Neisseriaceae/patologia , Osteoclastos/imunologia , Osteogênese/fisiologia , Animais , Linhagem Celular , Humanos , Kingella kingae , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7
8.
Front Immunol ; 12: 768439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858426

RESUMO

The shape and spatial organization -the anatomy- of a tissue profoundly influences its function. Knowledge of the anatomical relationships between parent and daughter cells is necessary to understand differentiation and how the crosstalk between the different cells in the tissue leads to physiological maintenance and pathological perturbations. Blood cell production takes place in the bone marrow through the progressive differentiation of stem cells and progenitors. These are maintained and regulated by a heterogeneous microenvironment composed of stromal and hematopoietic cells. While hematopoiesis has been studied in extraordinary detail through functional and multiomics approaches, much less is known about the spatial organization of blood production and how local cues from the microenvironment influence this anatomy. Here, we discuss some of the studies that revealed a complex anatomy of hematopoiesis where discrete local microenvironments spatially organize and regulate specific subsets of hematopoietic stem cells and/or progenitors. We focus on the open questions in the field and discuss how new tools and technological advances are poised to transform our understanding of the anatomy of hematopoiesis.


Assuntos
Células da Medula Óssea/fisiologia , Medula Óssea/fisiologia , Microambiente Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Medula Óssea/anatomia & histologia , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Modelos Biológicos
9.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948231

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model's applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.


Assuntos
Biomarcadores/metabolismo , Microambiente Celular/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Idoso , Quimiocina CCL7/metabolismo , Quimiocina CXCL13/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteômica/métodos , Receptor de TWEAK/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Life Sci ; 287: 120117, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740577

RESUMO

Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.


Assuntos
Pesquisa Biomédica/tendências , Microambiente Celular/fisiologia , Imunidade Celular/fisiologia , Músculo Esquelético/imunologia , Atrofia Muscular/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Denervação Muscular/métodos , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
11.
Curr Osteoporos Rep ; 19(6): 592-603, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34826091

RESUMO

PURPOSE OF REVIEW: Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency. RECENT FINDINGS: At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts. Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.


Assuntos
Reabsorção Óssea/fisiopatologia , Estrogênios/deficiência , Osteoblastos/fisiologia , Osteócitos/fisiologia , Osteoporose Pós-Menopausa/fisiopatologia , Animais , Apoptose/fisiologia , Microambiente Celular/fisiologia , Feminino , Humanos , Camundongos
12.
Cell Mol Life Sci ; 78(23): 7161-7183, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635950

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.


Assuntos
Neoplasias Ósseas/patologia , Regeneração Óssea/fisiologia , Tolerância Imunológica/imunologia , Células Supressoras Mieloides/citologia , Artrite Reumatoide/patologia , Doenças Ósseas/patologia , Neoplasias Ósseas/secundário , Microambiente Celular/fisiologia , Células Dendríticas/citologia , Granulócitos/citologia , Humanos , Imunidade Inata/imunologia , Macrófagos/citologia , Células Supressoras Mieloides/imunologia , Osteoartrite/patologia
13.
Cells ; 10(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34685490

RESUMO

The biological significance of the CD38 molecule goes beyond metabolic, enzymatic, and proliferative functions. CD38 possesses the functions of an exoenzyme and receptor, and is actively involved in the mechanisms of adhesion, migration, intercellular signaling, formation of immune synapses, and modulation of the activity of a wide range of immune and non-immune cells. The aim of this study was the immunohistochemical assessment of the cytological and histotopographic characteristics of CD38 expression in mast cells. CD38 expression was found in a minority of the mast cell population. It is characterized by wide variability from low to high levels. The intensity of CD38 expression in mast cells has organ-specific features and depends on the development of pathological processes in a specific tissue microenvironment. The mechanisms of intercellular interaction between mast cells and CD38+ cells foster new understanding of the protumorigenic or antitumor potential of tryptase.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Glicoproteínas de Membrana/metabolismo , Contagem de Células/métodos , Microambiente Celular/fisiologia , Humanos , Triptases/metabolismo
14.
Exp Cell Res ; 408(1): 112837, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547255

RESUMO

Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic neoplasms. The progression of malignancy is closely associated with immune regulation. Macrophages are indispensable tissue components and have been proposed to play a role in the pathophysiology of hematopoietic malignancies. However, the specific role of macrophages in the development of MDS remains unclear. Here, we investigated the characteristics and phenotypic evolution of macrophages from patients with MDS. Macrophages from patients with MDS expressed CD68, CD86 and CD163. Furthermore, MDS macrophages exhibited more M2-related characteristics. Moreover, a number of phenotype-associated genes in MDS macrophages exhibited diverse responses to iron overload or iron chelation upon stimulation by ferric chloride or deferoxamine (DFO, an iron chelator). Ferric chloride polarized MDS macrophages to exhibit more M1-related characteristics, a phenomenon that could be partially reversed by DFO. Therefore, this study reveals the characteristics and phenotypic evolution of MDS macrophages and broadens the knowledge of macrophage plasticity in hematopoietic malignancies.


Assuntos
Sobrecarga de Ferro/patologia , Ferro/metabolismo , Macrófagos/patologia , Síndromes Mielodisplásicas/patologia , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Microambiente Celular/fisiologia , Cloretos/metabolismo , Feminino , Compostos Férricos/metabolismo , Humanos , Sobrecarga de Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo
15.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207340

RESUMO

Mass spectrometry (MS) used in proteomic approaches is able to detect hundreds of proteins in a single assay. Although undeniable high analytical power of MS, data acquired sometimes lead to confusing results, especially during a search of very selective, unique interactions in complex biological matrices. Here, we would like to show an example of such confusing data, providing an extensive discussion on the observed phenomenon. Our investigations focus on the interaction between the Zika virus NS3 protease, which is essential for virus replication. This enzyme is known for helping to remodel the microenvironment of the infected cells. Several reports show that this protease can process cellular substrates and thereby modify cellular pathways that are important for the virus. Herein, we explored some of the targets of NS3, clearly shown by proteomic techniques, as processed during infection. Unfortunately, we could not confirm the biological relevance of protein targets for viral infections detected by MS. Thus, although mass spectrometry is highly sensitive and useful in many instances, also being able to show directions where cell/virus interaction occurs, we believe that deep recognition of their biological role is essential to receive complete insight into the investigated process.


Assuntos
Espectrometria de Massas/métodos , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Infecção por Zika virus/virologia , Zika virus/metabolismo , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Microambiente Celular/fisiologia , Chlorocebus aethiops , Células HEK293 , Humanos , Proteômica/métodos , Transdução de Sinais/fisiologia , Células Vero
16.
Front Immunol ; 12: 697362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234785

RESUMO

Hepatic injury induced by ischemia and reperfusion (HIRI) is a major clinical problem after liver resection or transplantation. The polarization of macrophages plays an important role in regulating the severity of hepatic ischemia/reperfusion injury. Recent evidence had indicated that the ischemia induces an acidic microenvironment by causing increased anaerobic glycolysis and accumulation of lactic acid. We hypothesize that the acidic microenvironment might cause the imbalance of intrahepatic immunity which aggravated HIRI. The hepatic ischemia/reperfusion injury model was established to investigate the effect of the acidic microenvironment to liver injury. Liposomes were used to deplete macrophages in vivo. Macrophages were cultured under low pH conditions to analyze the polarization of macrophages in vitro. Activation of the PPAR-γ signal was determined by Western blot. PPAR-γ agonist GW1929 was administrated to functionally test the role of PPAR-γ in regulating macrophage-mediated effects in the acidic microenvironment during HIRI. We demonstrate that acidic microenvironment aggravated HIRI while NaHCO3 reduced liver injury through neutralizing the acid, besides, liposome abolished the protective ability of NaHCO3 through depleting the macrophages. In vivo and vitro experiment showed that acidic microenvironment markedly promoted M1 polarization but inhibited M2 polarization of macrophage. Furthermore, the mechanistic study proved that the PPAR-γ signal was suppressed during the polarization of macrophages under pH = 6.5 culture media. The addition of PPAR-γ agonist GW1929 inhibited M1 polarization under acidic environment and reduced HIRI. Our results indicate that acidic microenvironment is a key regulator in HIRI which promoted M1 polarization of macrophages through regulating PPAR-γ. Conversely, PPAR-γ activation reduced liver injury, which provides a novel therapeutic concept to prevent HIRI.


Assuntos
Fígado/lesões , Fígado/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Benzofenonas/administração & dosagem , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Imunidade Inata/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/patologia , Macrófagos/classificação , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/agonistas , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Índice de Gravidade de Doença , Transdução de Sinais , Bicarbonato de Sódio/farmacologia , Tirosina/administração & dosagem , Tirosina/análogos & derivados
17.
Aging (Albany NY) ; 13(13): 16938-16956, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34292877

RESUMO

Macrophage accumulation and nitrosative stress are known mechanisms underlying age-related cardiovascular pathology and functional decline. The cardiac muscle microenvironment is known to change with age, yet the direct effects of these changes have yet to be studied in-depth. The present study sought to better elucidate the role that biochemical and biomechanical alterations in cardiac tissue have in the altered phenotype and functionality of cardiac resident macrophages observed with increasing age. To accomplish this, naïve bone marrow derived macrophages from young mice were seeded onto either functionalized poly-dimethyl-siloxane hydrogels ranging in stiffness from 2kPA to 64kPA or onto tissue culture plastic, both of which were coated with either young or aged solubilized mouse cardiac extracellular matrix (cECM). Both biomechanical and biochemical alterations were found to have a significant effect on macrophage polarization and function. Increased substrate stiffness was found to promote macrophage morphologies associated with pro-inflammatory macrophage activation, increased expression of pro-inflammatory inducible nitric oxide synthase protein with increased nitric oxide secretion, and attenuated arginase activity and protein expression. Additionally, exposure to aged cECM promoted attenuated responsivity to both canonical pro-inflammatory and anti-inflammatory cytokine signaling cues when compared to young cECM treated cells. These results suggest that both biomechanical and biochemical changes in the cardiovascular system play a role in promoting the age-related shift towards pro-inflammatory macrophage populations associated with cardiovascular disease development.


Assuntos
Microambiente Celular/fisiologia , Coração/fisiologia , Macrófagos/fisiologia , Macrófagos/ultraestrutura , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Arginase/metabolismo , Fenômenos Biomecânicos , Células da Medula Óssea , Citocinas/metabolismo , DNA/biossíntese , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos
18.
Cancer Sci ; 112(10): 3995-4004, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310776

RESUMO

Multiple myeloma (MM) is a refractory plasma cell tumor. In myeloma cells, the transcription factor IRF4, the master regulator of plasma cells, is aberrantly upregulated and plays an essential role in oncogenesis. IRF4 forms a positive feedback loop with MYC, leading to additional tumorigenic properties. In recent years, molecular targeted therapies have contributed to a significant improvement in the prognosis of MM. Nevertheless, almost all patients experience disease progression, which is thought to be a result of treatment resistance induced by various elements of the bone marrow microenvironment. Among these, the hypoxic response, one of the key processes for cellular homeostasis, induces hypoxia-adapted traits such as undifferentiation, altered metabolism, and dissemination, leading to drug resistance. These inductions are caused by ectopic gene expression changes mediated by the activation of hypoxia-inducible factors (HIFs). By contrast, the expression levels of IRF4 and MYC are markedly reduced by hypoxic stress. Notably, an anti-apoptotic capability is usually acquired under both normoxic and hypoxic conditions, but the mechanism is distinct. This fact strongly suggests that myeloma cells may survive by switching their dependent regulatory factors from IRF4 and MYC (normoxic bone marrow region) to HIF (hypoxic bone marrow microenvironment). Therefore, to achieve deep remission, combination therapeutic agents, which are complementarily effective against both IRF4-MYC-dominant and HIF-dominated fractions, may become an important therapeutic strategy for MM.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Hipóxia Tumoral/fisiologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/fisiologia , Desdiferenciação Celular , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Microambiente Celular/fisiologia , MicroRNA Circulante/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/fisiologia , Retroalimentação Fisiológica , Glicólise/fisiologia , Hexoquinase/metabolismo , Homeostase , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores Imunológicos/uso terapêutico , Fatores Reguladores de Interferon/genética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular/métodos , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/fisiologia , Oxigênio , Pressão Parcial , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/antagonistas & inibidores , Regulação para Cima
19.
Sci Rep ; 11(1): 13310, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172806

RESUMO

The use of cell-free scaffolds for the regeneration of clinically relevant volumes of soft tissue has been challenged, particularly in the case of synthetic biomaterials, by the difficulty of reconciling the manufacturing and biological performance requirements. Here, we investigated in vivo the importance of biomechanical and biochemical cues for conditioning the 3D regenerative microenvironment towards soft tissue formation. In particular, we evaluated the adipogenesis changes related to 3D mechanical properties by creating a gradient of 3D microenvironments with different stiffnesses using 3D Poly(Urethane-Ester-ether) PUEt scaffolds. Our results showed a significant increase in adipose tissue proportions while decreasing the stiffness of the 3D mechanical microenvironment. This mechanical conditioning effect was also compared with biochemical manipulation by loading extracellular matrices (ECMs) with a PPAR-γ activating molecule. Notably, results showed mechanical and biochemical conditioning equivalency in promoting adipose tissue formation in the conditions tested, suggesting that adequate mechanical signaling could be sufficient to boost adipogenesis by influencing tissue remodeling. Overall, this work could open a new avenue in the design of synthetic 3D scaffolds for microenvironment conditioning towards the regeneration of large volumes of soft and adipose tissue, with practical and direct implications in reconstructive and cosmetic surgery.


Assuntos
Microambiente Celular/fisiologia , Regeneração/fisiologia , Células 3T3-L1 , Adipogenia/fisiologia , Tecido Adiposo/fisiologia , Animais , Linhagem Celular , Matriz Extracelular/fisiologia , Camundongos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/fisiologia
20.
J Pathol ; 255(2): 141-154, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173975

RESUMO

Stromal-epithelial interactions are critical to the morphogenesis, differentiation, and homeostasis of the prostate, but the molecular identity and anatomy of discrete stromal cell types is poorly understood. Using single-cell RNA sequencing, we identified and validated the in situ localization of three smooth muscle subtypes (prostate smooth muscle, pericytes, and vascular smooth muscle) and two novel fibroblast subtypes in human prostate. Peri-epithelial fibroblasts (APOD+) wrap around epithelial structures, whereas interstitial fibroblasts (C7+) are interspersed in extracellular matrix. In contrast, the mouse displayed three fibroblast subtypes with distinct proximal-distal and lobe-specific distribution patterns. Statistical analysis of mouse and human fibroblasts showed transcriptional correlation between mouse prostate (C3+) and urethral (Lgr5+) fibroblasts and the human interstitial fibroblast subtype. Both urethral fibroblasts (Lgr5+) and ductal fibroblasts (Wnt2+) in the mouse contribute to a proximal Wnt/Tgfb signaling niche that is absent in human prostate. Instead, human peri-epithelial fibroblasts express secreted WNT inhibitors SFRPs and DKK1, which could serve as a buffer against stromal WNT ligands by creating a localized signaling niche around individual prostate glands. We also identified proximal-distal fibroblast density differences in human prostate that could amplify stromal signaling around proximal prostate ducts. In human benign prostatic hyperplasia, fibroblast subtypes upregulate critical immunoregulatory pathways and show distinct distributions in stromal and glandular phenotypes. A detailed taxonomy of leukocytes in benign prostatic hyperplasia reveals an influx of myeloid dendritic cells, T cells and B cells, resembling a mucosal inflammatory disorder. A receptor-ligand interaction analysis of all cell types revealed a central role for fibroblasts in growth factor, morphogen, and chemokine signaling to endothelia, epithelia, and leukocytes. These data are foundational to the development of new therapeutic targets in benign prostatic hyperplasia. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Microambiente Celular/fisiologia , Fibroblastos/citologia , Próstata/citologia , Animais , Matriz Extracelular , Humanos , Masculino , Camundongos , Hiperplasia Prostática/patologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA