Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(5): e0300883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758927

RESUMO

Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.


Assuntos
Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Masculino , Exposição à Radiação , Microbiota/efeitos da radiação , Metabolômica/métodos , Metaboloma/efeitos da radiação , Radiação Ionizante
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163296

RESUMO

Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.


Assuntos
Terapia com Luz de Baixa Intensidade/tendências , Microbiota/efeitos da radiação , Doenças Periodontais/microbiologia , Bactérias , Humanos , Raios Infravermelhos , Luz , Terapia com Luz de Baixa Intensidade/métodos , Mitocôndrias , Doenças Periodontais/radioterapia , Fototerapia/métodos , Fototerapia/tendências , Estomatite/radioterapia
3.
Dermatology ; 238(1): 109-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33887725

RESUMO

BACKGROUND: The pathophysiology in atopic dermatitis (AD) is not fully understood, but immune dysfunction, skin barrier defects, and alterations of the skin microbiota are thought to play important roles. AD skin is frequently colonized with Staphylococcus aureus (S. aureus) and microbial diversity on lesional skin (LS) is reduced compared to on healthy skin. Treatment with narrow-band ultraviolet B (nb-UVB) leads to clinical improvement of the eczema and reduced abundance of S. aureus. However, in-depth knowledge of the temporal dynamics of the skin microbiota in AD in response to nb-UVB treatment is lacking and could provide important clues to decipher whether the microbial changes are primary drivers of the disease, or secondary to the inflammatory process. OBJECTIVES: To map the temporal shifts in the microbiota of the skin, nose, and throat in adult AD patients after nb-UVB treatment. METHODS: Skin swabs were taken from lesional AD skin (n = 16) before and after 3 treatments of nb-UVB, and after 6-8 weeks of full-body treatment. We also obtained samples from non-lesional skin (NLS) and from the nose and throat. All samples were characterized by 16S rRNA gene sequencing. RESULTS: We observed shifts towards higher diversity in the microbiota of lesional AD skin after 6-8 weeks of treatment, while the microbiota of NLS and of the nose/throat remained unchanged. After only 3 treatments with nb-UVB, there were no significant changes in the microbiota. CONCLUSION: Nb-UVB induces changes in the skin microbiota towards higher diversity, but the microbiota of the nose and throat are not altered.


Assuntos
Dermatite Atópica/microbiologia , Dermatite Atópica/radioterapia , Microbiota/efeitos da radiação , Pele/microbiologia , Terapia Ultravioleta , Adulto , Idoso , Biodiversidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/microbiologia , Faringe/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos da radiação , Resultado do Tratamento , Adulto Jovem
4.
Environ Pollut ; 294: 118646, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896224

RESUMO

With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m2, 1 W/m2 and 10 W/m2. We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.


Assuntos
Drosophila melanogaster , Campos Eletromagnéticos , Microbiota/efeitos da radiação , Ondas de Rádio , Animais , Telefone Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/efeitos da radiação , Expressão Gênica , Proteínas de Choque Térmico , Larva/efeitos da radiação
5.
Sci Rep ; 11(1): 5179, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664352

RESUMO

Radiotherapy-induced dermatitis (RID) is an inflammatory cutaneous disorder that is acquired as an adverse effect of undergoing radiotherapy. Skin microbiome dysbiosis has been linked to the outcomes of several dermatological diseases. To explore the skin microbiota of RID and deduce their underlying impact on the outcome of RID, cutaneous microbiomes of 78 RID patients and 20 healthy subjects were characterized by sequencing V1-V3 regions of 16S rRNA gene. In total, a significantly apparent reduction in bacterial diversity was detected in microbiomes of RID in comparison to controls. Overall, the raised Proteobacteria/ Firmicutes ratio was significantly linked to delayed recovery or tendency toward the permanence of RID (Kruskal Wallis: P = 2.66 × 10-4). Moreover, applying enterotyping on our samples stratified microbiomes into A, B, and C dermotypes. Dermotype C included overrepresentation of Pseudomonas, Staphylococcus and Stenotrophomonas and was markedly associated with delayed healing of RID. Strikingly, coexistence of diabetes mellitus and RID was remarkably correlated with a significant overrepresentation of Klebsiella or Pseudomonas and Staphylococcus. Metabolic abilities of skin microbiome could support their potential roles in the pathogenesis of RID. Cutaneous microbiome profiling at the early stages of RID could be indicative of prospective clinical outcomes and maybe a helpful guide for personalized therapy.


Assuntos
Bactérias/genética , Disbiose/microbiologia , Radiodermite/microbiologia , Pele/microbiologia , Adulto , Bactérias/classificação , Bactérias/efeitos da radiação , Disbiose/etiologia , Disbiose/genética , Disbiose/patologia , Feminino , Humanos , Inflamação/etiologia , Inflamação/microbiologia , Inflamação/patologia , Masculino , Microbiota/efeitos da radiação , Pessoa de Meia-Idade , Prognóstico , RNA Ribossômico 16S/genética , Radiodermite/genética , Radiodermite/patologia
6.
Int J Radiat Oncol Biol Phys ; 109(1): 145-150, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866565

RESUMO

PURPOSE: The human commensal microbiome has been suggested to be involved in the regulation of response to anticancer therapies. However, little is known regarding changes in commensal microbes in patients with cancer during radiation therapy. We conducted a prospective, longitudinal proof-of-concept cohort study with patients with newly diagnosed nasopharyngeal carcinoma (NPC) who underwent radiation therapy-based treatment. METHODS AND MATERIALS: Nasopharyngeal swabs were collected before radiation therapy, twice per week during radiation therapy, and after radiation therapy. The nasopharyngeal microbiome was assessed using 16S rRNA amplicon sequencing. A patient's response to treatment was measured 3 months after the completion of radiation therapy as a short-term clinical outcome. In total, 39 NPC patients with 445 nasopharyngeal samples were analyzed. RESULTS: There was stable temporal change in the community structure of the nasopharyngeal microbiome among patients with NPC during treatment (P = .0005). Among 73 abundant amplicon sequence variants (ASVs), 7 ASVs assigned to genus Corynebacterium decreased significantly during the treatment (W-statistic >80%); 23 ASVs showed statistically significant changes in the ratio of abundance between early and late responders during treatment (false discovery rate <0.05). CONCLUSIONS: This study addressed stable temporal change in the nasopharyngeal microbiome among patients with NPC during radiation therapy-based treatment and provided preliminary evidence of an association with a short-term clinical outcome.


Assuntos
Microbiota/efeitos da radiação , Carcinoma Nasofaríngeo/microbiologia , Carcinoma Nasofaríngeo/radioterapia , Nasofaringe/microbiologia , Nasofaringe/efeitos da radiação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Sci Rep ; 10(1): 16582, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024215

RESUMO

Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients' well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation ("after"). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.


Assuntos
Quimiorradioterapia , Neoplasias de Cabeça e Pescoço/microbiologia , Neoplasias de Cabeça e Pescoço/terapia , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Saliva/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adulto , Idoso , Candida/genética , Candida/isolamento & purificação , Feminino , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
8.
Biomarkers ; 25(8): 677-684, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32960109

RESUMO

INTRODUCTION: Oral mucositis (OM) is a severe side effect in patients undergoing anticancer therapies, which negatively impacts on their quality of life often leading to either the interruption of the therapy. Photobiomodulation (PBM) is emerging as an effective strategy allowing a faster wound healing. OBJECTIVES: This pilot study aims at verifying whether PBM modulates the inflammatory response in patients and its effect on the oral microbiome composition. MATERIALS AND METHODS: Buccal swabs were collected from four patients affected by OM, both on ulcerated and clinically healthy areas, before and on the last day of PBM therapy, as well as on the first day after treatment discontinuation. The concentration of 38 cytokines and the composition of oral microbiome were measured. RESULTS: Most of the pro-inflammatory cytokines were reduced, whereas anti-inflammatory cytokines resulted up-regulated by PBM. In addition, PBM influenced the composition of oral microbiome, by decreasing the amount of pathogenic species and promoting the growth of commensal bacteria. These changes were even more evident when separately analysing patients who clinically responded to PBM and the only patient who did not respond. CONCLUSIONS: PBM reduces inflammatory burden in patients affected by OM and positively influences the composition of the oral microbiome.


Assuntos
Bactérias/efeitos da radiação , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Terapia com Luz de Baixa Intensidade , Microbiota/efeitos da radiação , Mucosa Bucal/efeitos da radiação , Estomatite/radioterapia , Bactérias/crescimento & desenvolvimento , Disbiose , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Projetos Piloto , Estomatite/metabolismo , Estomatite/microbiologia , Estomatite/patologia , Resultado do Tratamento
9.
Cancer ; 126(23): 5124-5136, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888342

RESUMO

BACKGROUND: Oral mucositis (OM) is a debilitating sequela for patients treated for squamous cell carcinoma of the head and neck (HNSCC). This study investigated whether oral microbial features before treatment or during treatment are associated with the time to onset of severe OM in patients with HNSCC. METHODS: This was a cohort study of newly diagnosed patients with locoregional HNSCC who received chemotherapy with or without radiotherapy from April 2016 to September 2017. OM was based on the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0. The oral microbiome was characterized on the basis of the 16S ribosomal RNA V4 region with the Illumina platform. A mixture cure model was used to generate hazard ratios for the onset of severe OM. RESULTS: Eighty-six percent of the patients developed OM (n = 57 [33 nonsevere cases and 24 severe cases]) with a median time to onset of OM of 21 days. With adjustments for age, sex, and smoking status, genera abundance was associated with the hazard for the onset of severe OM as follows: 1) at the baseline (n = 66), Cardiobacterium (P = .03) and Granulicatella (P = .04); 2) immediately before the development of OM (n = 57), Prevotella (P = .03), Fusobacterium (P = .03), and Streptococcus (P = .01); and 3) immediately before the development of severe OM (n = 24), Megasphaera (P = .0001) and Cardiobacterium (P = .03). There were no differences in α-diversity between the baseline samples and Human Microbiome Project data. CONCLUSIONS: Changes in the abundance of genera over the course of treatment were associated with the onset of severe OM. The mechanism and therapeutic implications of these findings need to be investigated in future studies.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Microbiota , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Estomatite/etiologia , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/microbiologia , Humanos , Masculino , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Pessoa de Meia-Idade , RNA Ribossômico 16S , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Estomatite/microbiologia , Fatores de Tempo
10.
PLoS One ; 15(8): e0235948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785216

RESUMO

INTRODUCTION: Surgical site infection is one of the most severe complications of surgical treatments. However, the optimal procedure to prevent such infections remains uninvestigated. Ultraviolet radiation C (UVC) with a short wavelength has a high bactericidal effect; however, it is cytotoxic. Nonetheless, given that UVC with a wavelength of 222 nm reaches only the stratum corneum, it does not affect the skin cells. This study aimed to investigate the safety of 222-nm UVC irradiation and to examine its skin sterilization effect in healthy volunteers. METHODS: This trial was conducted on 20 healthy volunteers. The back of the subject was irradiated with 222-nm UVC at 50-500 mJ/cm2, and the induced erythema (redness of skin) was evaluated. Subsequently, the back was irradiated with a maximum amount of UVC not causing erythema, and the skin swabs before and after the irradiation were cultured. The number of colonies formed after 24 hours was measured. In addition, cyclobutene pyrimidine dimer (CPD) as an indicator of DNA damage was measured using skin tissues of the nonirradiated and irradiated regions. RESULTS: All subjects experienced no erythema at all doses. The back of the subject was irradiated at 500 mJ/cm2, and the number of bacterial colonies in the skin swab culture was significantly decreased by 222-nm UVC irradiation. The CPD amount produced in the irradiated region was slightly but significantly higher than that of the non-irradiated region. CONCLUSION: A 222-nm UVC at 500 mJ/cm2 was a safe irradiation dose and possessed bactericidal effects. In the future, 222-nm UVC irradiation is expected to contribute to the prevention of perioperative infection.


Assuntos
Dano ao DNA/efeitos da radiação , Microbiota/efeitos da radiação , Pele/efeitos da radiação , Esterilização/métodos , Raios Ultravioleta/efeitos adversos , Adulto , Dorso , Biópsia , Contagem de Colônia Microbiana , Eritema/diagnóstico , Eritema/etiologia , Voluntários Saudáveis , Humanos , Masculino , Dímeros de Pirimidina/análise , Dímeros de Pirimidina/efeitos da radiação , Pele/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Resultado do Tratamento
11.
Int J Radiat Biol ; 96(8): 961-971, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32420768

RESUMO

Purpose: Rapid developments in high throughput screening technology for the detection and identification of the human microbiota have helped in understanding its influence on human health and disease. In the recent past, several seminal studies have demonstrated the influence of microbiota on outcomes of therapy-associated radiation exposure. In this review, we highlight the concepts related to the mechanisms by which radiation alters the microbiota composition linked with radiation-associated toxicity in head and neck and pelvic regions. We further discuss specific microbial changes that can be employed as a biomarker for radiation and tumor response.Conclusion: Knowledge of the influence of microbiota in radiation response and advances in microbiota manipulation techniques would help to design personalized treatment augmenting the efficacy of radiotherapy.


Assuntos
Cabeça , Microbiota/efeitos da radiação , Pescoço , Pelve/efeitos da radiação , Radioterapia/efeitos adversos , Humanos
12.
Trends Cancer ; 6(3): 192-204, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32101723

RESUMO

The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.


Assuntos
Microbiota , Neoplasias/microbiologia , Analgésicos Opioides/uso terapêutico , Animais , Bactérias/metabolismo , Sistema Nervoso Central/fisiologia , Sinergismo Farmacológico , Microbiologia Ambiental , Gastrite/microbiologia , Microbioma Gastrointestinal , Infecções por Helicobacter/complicações , Interações Hospedeiro-Patógeno , Humanos , Imunoterapia , Camundongos , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Neoplasias/etiologia , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade , Probióticos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/microbiologia , Simbiose , Infecções Tumorais por Vírus
13.
Photodermatol Photoimmunol Photomed ; 36(3): 185-191, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31880842

RESUMO

BACKGROUND: The skin microbiome has been implicated in the pathophysiology of atopic dermatitis (AD). Although 308 nm excimer light treatment is an effective phototherapy for AD, its effects on the skin microbiome currently remain unclear. Therefore, we investigated the effects of the excimer light treatment on the skin bacterial and fungal microbiome of lesional skin of AD. METHODS: Swab samples were collected from 11 healthy controls, non-lesional and lesional skin of 11 AD patients. The excimer light treatment was administered to the lesional skin. The composition of the skin microbiome, the clinical score and skin barrier function of the lesional skin were examined before and after the treatment. The composition of the skin microbiome was determined by sequencing bacterial 16S and fungal internal transcribed spacer regions. RESULTS: The excimer light treatment significantly changed the composition of the bacterial microbiome in the lesional skin of AD, as well as improved the clinical score and skin barrier function. The treatment increased the relative abundance of the phylum Cyanobacteria and decreased that of the phylum Bacteroidetes in lesional skin. At the species level, the treatment significantly decreased the relative abundance of Staphylococcus aureus (S aureus) in lesional skin. There was also a significant correlation between the reduction of S aureus and improvement of the clinical outcomes. CONCLUSION: Our findings suggest that alterations of the skin microbiome with excimer light treatment, specifically the decrease in the abundance of S aureus, are partly involved in the improvement of AD lesions.


Assuntos
Dermatite Atópica/microbiologia , Dermatite Atópica/radioterapia , Lasers de Excimer/uso terapêutico , Microbiota/efeitos da radiação , Pele/microbiologia , Adulto , Bacteroidetes/isolamento & purificação , Cianobactérias/isolamento & purificação , Feminino , Humanos , Malassezia/isolamento & purificação , Masculino , Fenômenos Fisiológicos da Pele/efeitos da radiação , Staphylococcus aureus/isolamento & purificação , Resultado do Tratamento , Perda Insensível de Água/efeitos da radiação , Adulto Jovem
14.
Photobiomodul Photomed Laser Surg ; 37(11): 681-693, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31596658

RESUMO

Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered.


Assuntos
Terapia com Luz de Baixa Intensidade , Microbiota/efeitos da radiação , Animais , Disbiose/radioterapia , Humanos
15.
Environ Pollut ; 255(Pt 1): 113238, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31655460

RESUMO

The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.


Assuntos
Acidente Nuclear de Chernobyl , Microbiota/efeitos da radiação , Oligoquetos/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Bactérias/efeitos dos fármacos , Epigênese Genética , Microbioma Gastrointestinal , Oligoquetos/efeitos dos fármacos , Oligoquetos/microbiologia , Oligoquetos/efeitos da radiação , Exposição à Radiação , Monitoramento de Radiação , Radioisótopos , Solo/química
16.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514281

RESUMO

The glycerol fermentation of probiotic Staphylococcus epidermidis (S. epidermidis) in the skin microbiome produced butyric acid in vitro at concentrations in the millimolar range. The exposure of dorsal skin of mice to ultraviolet B (UVB) light provoked a significant increased production of pro-inflammatory interleukin (IL)-6 cytokine. Topical application of butyric acid alone or S. epidermidis with glycerol remarkably ameliorated the UVB-induced IL-6 production. In vivo knockdown of short-chain fatty acid receptor 2 (FFAR2) in mouse skin considerably blocked the probiotic effect of S. epidermidis on suppression of UVB-induced IL-6 production. These results demonstrate that butyric acid in the metabolites of fermenting skin probiotic bacteria mediates FFAR2 to modulate the production of pro-inflammatory cytokines induced by UVB.


Assuntos
Ácido Butírico/farmacologia , Interleucina-6/metabolismo , Microbiota/efeitos dos fármacos , Probióticos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Pele/microbiologia , Staphylococcus epidermidis/química , Raios Ultravioleta , Acetolactato Sintase/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Glicerol/farmacologia , Inflamação/patologia , Camundongos Endogâmicos ICR , Microbiota/efeitos da radiação , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação
17.
Oncol Nurs Forum ; 46(2): E48-E59, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30767956

RESUMO

OBJECTIVES: To characterize the vaginal microbiome using QIIME 2™ (Quantitative Insights Into Microbial Ecology 2) in women with gynecologic cancer. SAMPLE & SETTING: 19 women with gynecologic cancer before and after radiation therapy at a comprehensive cancer center in Atlanta, Georgia. METHODS & VARIABLES: This pilot study analyzed vaginal microbiome communities using a microbiome analysis pipeline, beginning with 16S rRNA gene sequencing and processing through use of a bioinformatics pipeline to downstream microbial statistical analysis. RESULTS: The findings showed the methods to be robust, and most women with gynecologic cancer showed depletion of Lactobacillus. Compared to those pre-radiation therapy, women post-radiation therapy showed higher abundances of Mobiluncus, Atopobium, and Prevotella but lower abundances of Lactobacillus, Gardnerella, and Peptostreptococcus, which are associated with bacterial vaginosis. IMPLICATIONS FOR NURSING: This study presents the fundamentals of human microbiome data collection and analysis methods to inform nursing science. Assessing the vaginal microbiome provides a potential pathway to develop interventions to ameliorate dysbiosis of the vaginal microbiome.


Assuntos
Neoplasias dos Genitais Femininos/microbiologia , Neoplasias dos Genitais Femininos/radioterapia , Microbiota/genética , Microbiota/efeitos da radiação , RNA Ribossômico 16S/análise , Vagina/microbiologia , Adulto , Idoso , Feminino , Georgia , Humanos , Pessoa de Meia-Idade , Projetos Piloto
18.
Lasers Med Sci ; 34(2): 317-327, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30074108

RESUMO

The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.


Assuntos
Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade , Doenças Metabólicas/radioterapia , Microbiota/efeitos da radiação , Animais , Fezes/microbiologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microbiota/genética , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética
19.
Exp Dermatol ; 28(2): 136-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506967

RESUMO

BACKGROUND: Studies have begun to investigate the complex relationship between host and microorganisms in non-infectious pathologies such as acne, atopic dermatitis and psoriasis. Though the skin is exposed to environmental stressors such as ultraviolet radiation (UVR), no studies exist examining the effects of both UVA and UVB on the skin microbiome. OBJECTIVE: To test the effect of UVA and UVB on human skin microbiome. METHODS: To test whether UV will alter the cutaneous microbiome, participants were exposed to doses of UVA (22-47 J/cm2 ) or UVB (100-350 mJ/cm2 ) and samples were collected. DNA was isolated and sequenced to identify the microbial composition of each sample. RESULTS: There was vast intra- and inter-subject variation at all time points, and phylum and species-level differences were identified. These included an increase in the phylum Cyanobacteria and a decrease in the family Lactobacillaceae and Pseudomonadaceae. The sensitivity of microbes to UVR and their re-colonization potential following exposure differed in UVA vs UVB samples. LIMITATIONS: The sample size was small, and the study was limited to males. CONCLUSION: The results demonstrate that UVR has profound qualitative and quantitative influences on the composition of the skin microbiome, possibly effecting skin pathology in which UVR is a factor.


Assuntos
Microbiota/efeitos da radiação , Pele/microbiologia , Pele/efeitos da radiação , Raios Ultravioleta , Acne Vulgar/microbiologia , Adulto , DNA/efeitos da radiação , Dermatite Atópica/microbiologia , Humanos , Inflamação/microbiologia , Masculino , Psoríase/microbiologia , Adulto Jovem
20.
J Environ Radioact ; 196: 50-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30388428

RESUMO

Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and ß, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.


Assuntos
Microbiota/efeitos da radiação , Exposição à Radiação/estatística & dados numéricos , Radiação Ionizante , Microbiologia Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA