Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
J Vis Exp ; (209)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072636

RESUMO

Exosomes, as emerging "next-generation" biotherapeutics and drug delivery vectors, hold immense potential in diverse biomedical fields, ranging from drug delivery and regenerative medicine to disease diagnosis and tumor immunotherapy. However, the rapid clearance by traditional bolus injection and poor stability of exosomes restrict their clinical application. Microneedles serve as a solution that prolongs the residence time of exosomes at the administration site, thereby maintaining the drug concentration and facilitating sustained therapeutic effects. In addition, microneedles also possess the ability to maintain the stability of bioactive substances. Therefore, we introduce a microneedle patch for loading and delivering exosomes and share the methods, including isolation of exosomes, fabrication, and characterization of exosome-loaded microneedle patches. The microneedle patches were fabricated using trehalose and hyaluronic acid as the tip materials and polyvinylpyrrolidone as the backing material through a two-step casting method. The microneedles demonstrated robust mechanical strength, with tips able to withstand 2 N. Pig skin was used to simulate human skin, and the tips of microneedles completely melted within 60 s after skin puncture. The exosomes released from the microneedles exhibited morphology, particle size, marker proteins, and biological functions comparable to those of fresh exosomes, enabling dendritic cells uptake and promoting their maturation.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Ácido Hialurônico , Microinjeções , Agulhas , Exossomos/química , Animais , Suínos , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Microinjeções/métodos , Microinjeções/instrumentação , Ácido Hialurônico/química , Humanos , Povidona/química , Adesivo Transdérmico , Trealose/química
2.
Int J Pharm ; 661: 124400, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950662

RESUMO

Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos , Microinjeções , Agulhas , Doenças do Sistema Nervoso , Humanos , Sistemas de Liberação de Medicamentos/métodos , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Microinjeções/métodos
3.
Int J Pharm ; 660: 124347, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38885777

RESUMO

Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 µm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.


Assuntos
Anestésicos Locais , Sistemas de Liberação de Medicamentos , Agulhas , Ropivacaina , Pele , Ropivacaina/administração & dosagem , Ropivacaina/farmacocinética , Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacocinética , Anestésicos Locais/química , Animais , Pele/metabolismo , Administração Cutânea , Liberação Controlada de Fármacos , Absorção Cutânea , Povidona/química , Estudo de Prova de Conceito , Solubilidade , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Microinjeções/métodos , Masculino , Ratos Sprague-Dawley , Álcool de Polivinil/química
4.
J Control Release ; 371: 193-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782066

RESUMO

Microneedle patches have been developed as favorable platforms for delivery systems, such as the locoregional application of therapeutic drugs, and implantation systems, such as electronic devices on visceral tissue surfaces. However, the challenge lies in finding materials that can achieve both biocompatibility and stable fixation on the target tissue. To address this issue, utilizing a biocompatible adhesive biomaterial allows the flat part of the patch to adhere as well, enabling double-sided adhesion for greater versatility. In this work, we propose an adhesive microneedle patch based on mussel adhesive protein (MAP) with enhanced mechanical strength via ultraviolet-induced polyacrylate crosslinking and Coomassie brilliant blue molecules. The strong wet tissue adhesive and biocompatible nature of engineered acrylated-MAP resulted in the development of a versatile wet adhesive microneedle patch system for in vivo usage. In a mouse tumor model, this microneedle patch effectively delivered anticancer drugs while simultaneously sealing the skin wound. Additionally, in an application of rat subcutaneous implantation, an electronic circuit was stably anchored using a double-sided wet adhesive microneedle patch, and its signal location underneath the skin did not change over time. Thus, the proposed acrylated-MAP-based wet adhesive microneedle patch system holds great promise for biomedical applications, paving the way for advancements in drug delivery therapeutics, tissue engineering, and implantable electronic medical devices.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Proteínas , Animais , Proteínas/administração & dosagem , Microinjeções/métodos , Ratos Sprague-Dawley , Adesivo Transdérmico , Adesivos Teciduais/administração & dosagem , Camundongos , Humanos , Antineoplásicos/administração & dosagem , Masculino , Linhagem Celular Tumoral , Ratos , Feminino , Camundongos Endogâmicos BALB C , Pele/metabolismo , Adesivos/administração & dosagem , Acrilatos/química , Acrilatos/administração & dosagem
5.
STAR Protoc ; 5(2): 103022, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38625797

RESUMO

Precise integration of DNA constructs greater than 3 kb into mouse zygotes is difficult. Here, we present a protocol for large DNA transgenesis in mice using the Cas9+Bxb1 toolbox. We describe steps for choosing mouse strains with preplaced attachment sites. We then detail procedures for microinjecting mouse zygotes with the plasmid donor DNA construct to generate transgenic mice by recombination-mediated cassette exchange. This protocol has the potential for application in exploring the functional implications of large structural variations in cancer. For complete details on the use and execution of this protocol, please refer to Low et al.1 and Hosur et al.2.


Assuntos
DNA , Técnicas de Transferência de Genes , Camundongos Transgênicos , Animais , Camundongos , DNA/genética , Sistemas CRISPR-Cas/genética , Zigoto/metabolismo , Microinjeções/métodos , Plasmídeos/genética , Feminino
6.
Adv Sci (Weinh) ; 11(8): e2304124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899686

RESUMO

Microneedles have emerged as a promising platform for transdermal drug delivery with prominent advantages, such as enhanced permeability, mitigated pain, and improved patient adherence. While microneedles have primarily been employed for delivering small molecules, nucleic acids, peptides, and proteins, recent researches have demonstrated their prospect in combination with cell therapy. Cell therapy involving administration or transplantation of living cells (e.g. T cells, stem cells, and pancreatic cells) has gained significant attention in preclinical and clinical applications for various disease treatments. However, the effectiveness of systemic cell delivery may be restricted in localized conditions like solid tumors and skin disorders due to limited penetration and accumulation into the lesions. In this perspective, an overview of recent advances in microneedle-assisted cell delivery for immunotherapy, tissue regeneration, and hormone modulation, with respect to their mechanical property, cell loading capacity, as well as viability and bioactivity of the loaded cells is provided. Potential challenges and future perspectives with microneedle-mediated cell therapy are also discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Humanos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Proteínas
7.
Chem Commun (Camb) ; 59(23): 3339-3359, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815500

RESUMO

The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Iontoforese/métodos , Preparações Farmacêuticas/metabolismo , Microinjeções/métodos
8.
IEEE Trans Nanobioscience ; 22(3): 538-547, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36279350

RESUMO

Many virus-mediated and chemical-based methods for delivering foreign genes into target cells, such as recombinant lentivirus transfection and cationic lipid transfection, are remarkably challenging to use on immune cells because of low efficiency and high toxicity. Microinjection is a promising method to deliver foreign gene expression plasmids into single macrophages directly. This paper reports a new method that can be used to produce a genetically engineered macrophage cell line with enhanced immunity through a home-made high-throughput microinjection system. Microinjection of the expression plasmid carrying a mouse-derived toll-like receptor 4 (Tlr4) gene into a mouse macrophage cell line (Raw264.7) can construct a new stable cell line overexpressing the target gene. The expression efficiency of the target gene in the injected Raw264.7 cells reached 90%, which was measured by injecting a particular plasmid carrying a fused enhanced green fluorescent protein (eGFP) gene fragment with the Tlr4 gene and counting the proportion of cells that emitted green fluorescence. Further assessment of the messenger RNA (mRNA) and protein produced by the Tlr4 gene indicated that its expression was up-regulated remarkably in successfully injected cells. The expression of downstream genes of Tlr4 in injected cells was higher than in untouched cells. Microinjection can avoid polarization effects, which are common when traditional transfection methods are used. A case study was conducted to verify that the injected macrophages overexpressing Tlr4 could activate downstream signaling pathways and showed enhanced inhibition effect on tumor cell migration and invasion. The success of this research will verify that microinjection can be an efficient and safe method in cell transfection applications.


Assuntos
Macrófagos , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Microinjeções/métodos , Linhagem Celular , Macrófagos/metabolismo , Transfecção
9.
J Control Release ; 348: 186-205, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662577

RESUMO

Microneedles are a rapidly developing method for the transdermal delivery of therapeutic compounds. All types of microneedles, whether solid, hollow, coated, or dissolving function by penetrating the stratum corneum layer of the skin producing a microchannel through which therapeutic agents may be delivered. To date, coated and hollow microneedles have been the most successful, despite suffering from issues such as poor drug loading capabilities and blocked pores. Dissolving microneedles, on the other hand, have superior drug loading as well as other positive attributes that make it an ideal delivery system, including simple methods of fabrication and disposal, and abundantly available materials. Indeed, dissolvable microneedles can even be fabricated entirely from the therapeutic agent itself thus eliminating the requirement for additional excipients. This focused review presents the recent developments and trends of dissolving microneedles as well as potential future directions. The advantages, and disadvantages of dissolving microneedles as well as fabrication materials and methods are discussed. The potential applications of dissolving microneedles as a drug delivery system in different therapeutic areas in both research literature and clinical trials is highlighted. Applications including the delivery of cosmetics, vaccine delivery, diagnosis and monitoring, cancer, pain and inflammation, diabetes, hair and scalp disorders and inflammatory skin diseases are presented. The current trends observed in the microneedle landscape with particular emphasis on contemporary clinical trials and commercial successes as well as barriers impeding microneedle development and commercialisation are also discussed.


Assuntos
Agulhas , Absorção Cutânea , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Preparações Farmacêuticas , Pele/metabolismo
10.
Drug Deliv Transl Res ; 12(7): 1556-1568, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564827

RESUMO

Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.


Assuntos
Agulhas , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis , Microinjeções/métodos , Peptídeos , Polímeros , Pele/metabolismo
11.
Sci Rep ; 11(1): 24114, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916571

RESUMO

Delivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods. The relationship between the time that a conventional dissolvable microneedle array is left on skin without needle detachment from the base and the degree of skin surface abrasion at each microneedle penetration spot is also demonstrated on skin of human volunteers. Co-loading glutathione with vitamin C (vitC) can stabilize vitC in the DDMN. DDMN loaded with vitC and glutathione can help erasing post-acne-hyperpigmentation spots.


Assuntos
Ácido Ascórbico/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glutationa/administração & dosagem , Hiperpigmentação/tratamento farmacológico , Microinjeções/métodos , Agulhas , Animais , Ácido Ascórbico/metabolismo , Difusão , Estabilidade de Medicamentos , Epiderme/metabolismo , Glutationa/metabolismo , Humanos , Injeções Intradérmicas , Ratos , Fenômenos Fisiológicos da Pele , Suínos
12.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641460

RESUMO

A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções/instrumentação , Microinjeções/métodos , Agulhas/estatística & dados numéricos , Preparações Farmacêuticas/administração & dosagem , Animais , Humanos
13.
Stroke ; 52(7): 2393-2403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102854

RESUMO

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Hemorragia Cerebral/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Tálamo/metabolismo , Receptor 4 Toll-Like/biossíntese , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções/métodos , Neuralgia/genética , Neuralgia/patologia , Neurônios/patologia , Tálamo/patologia , Receptor 4 Toll-Like/genética
14.
Exp Neurol ; 343: 113760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000248

RESUMO

General anesthetic agents are thought to induce loss-of-consciousness (LOC) and enable pain-free surgery by acting on the endogenous brain circuitry responsible for sleep-wake cycling. In clinical use, the entire CNS is exposed to anesthetic molecules with LOC and amnesia usually attributed to synaptic suppression in the cerebral cortex and immobility and analgesia to agent action in the spinal cord and brainstem. This model of patch-wise suppression has been challenged, however, by the observation that all functional components of anesthesia can be induced by focal delivery of minute quantities of GABAergic agonists to the brainstem mesopontine tegmental anesthesia area (MPTA). We compared spectral features of the cortical electroencephalogram (EEG) in rats during systemic anesthesia and anesthesia induced by MPTA microinjection. Systemic administration of (GABAergic) pentobarbital yielded the sustained, δ-band dominant EEG signature familiar in clinical anesthesia. In contrast, anesthesia induced by MPTA microinjection (pentobarbital or muscimol) featured epochs of δ-band EEG alternating with the wake-like EEG, the pattern typical of natural non-rapid-eye-movement (NREM) and REM sleep. The rats were not sleeping, however, as they remained immobile, atonic and unresponsive to noxious pinch. Recalling the paradoxical wake-like quality the EEG during REM sleep, we refer to this state as "paradoxical anesthesia". GABAergic anesthetics appear to co-opt both cortical and spinal components of the sleep network via dedicated axonal pathways driven by MPTA neurons. Direct drug exposure of cortical and spinal neurons is not necessary, and is probably responsible for off-target side-effects of systemic administration including monotonous δ-band EEG, hypothermia and respiratory depression. SIGNIFICANCE STATEMENT: The concept that GABAergic general anesthetic agents induce loss-of-consciousness by substituting for an endogenous neurotransmitter, thereby co-opting neural circuitry responsible for sleep-wake transitions, has gained considerable traction. However, the electroencephalographic (EEG) signatures of sleep and anesthesia differ fundamentally. We show that when the anesthetic state is generated by focal delivery of GABAergics into the mesopontine tegmental anesthesia area (MPTA) the resulting EEG repeatedly transitions between delta-wave-dominant and wake-like patterns much as in REM-NREM sleep. This suggests that systemic (clinical) anesthetic delivery, which indiscriminately floods the entire cerebrum with powerful inhibitory agents, obscures the sleep-like EEG signature associated with the less adulterated form of anesthesia obtained when the drugs are applied selectively to loci where the effective neurotransmitter substitution actually occurs.


Assuntos
Anestesia/métodos , Tronco Encefálico/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , GABAérgicos/administração & dosagem , Microinjeções/métodos , Fases do Sono/efeitos dos fármacos , Animais , Tronco Encefálico/fisiologia , Eletroencefalografia/métodos , Feminino , Masculino , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Fases do Sono/fisiologia
15.
Mol Neurobiol ; 58(7): 3187-3197, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33634378

RESUMO

Parkinson's disease (PD), a common neurodegenerative disease, is typically associated with the loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc). Ferroptosis is a newly identified cell death, which associated with iron accumulation, glutathione (GSH) depletion, lipid peroxidation formation, reactive oxygen species (ROS) accumulation, and glutathione peroxidase 4 (GPX4) reduction. It has been reported that ferroptosis is linked with PD.Thioredoxin-1 (Trx-1) is a redox regulating protein and plays various roles in regulating the activity of transcription factors and inhibiting apoptosis. However, whether Trx-1 plays the role in regulating ferroptosis involved in PD is still unknown. Our present study showed that 1-methyl-4-phenylpyridinium (MPP+) decreased cell viability, GPX4, and Trx-1, which were reversed by Ferrostatin-1 (Fer-1) in PC 12 cells and SH-SY5Y cells. Moreover, the decreased GPX4 and GSH, and increased ROS were inhibited by Fer-1 and Trx-1 overexpression. We further repeated that behavior deficits resulted from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were improved in Trx-1 overexpression transgenic mice. Trx-1 reversed the decreases of GPX4 and tyrosine hydroxylase (TH) induced by MPTP in the substantia nigra pars compacta (SNpc). Our results suggest that Trx-1 inhibits ferroptosis in PD through regulating GPX4 and GSH.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Ferroptose/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/epidemiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/biossíntese , Tiorredoxinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ferroptose/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Células PC12 , Ratos
16.
CRISPR J ; 4(1): 132-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616447

RESUMO

Studies of knockout (KO) mice with defects in the endolysosomal two-pore channels (TPCs) have shown TPCs to be involved in pathophysiological processes, including heart and muscle function, metabolism, immunity, cancer, and viral infection. With the objective of studying TPC2's pathophysiological roles for the first time in a large, more humanlike animal model, TPC2 KO pigs were produced using CRISPR-Cas9. A major problem using CRISPR-Cas9 to edit embryos is mosaicism; thus, we studied for the first time the effect of microinjection timing on mosaicism. Mosaicism was greatly reduced when in vitro produced embryos were microinjected before insemination, and surgical embryo transfer (ET) was performed using such embryos. All TPC2 KO fetuses and piglets born following ET (i.e., F0 generation) were nonmosaic biallelic KOs. The generation of nonmosaic animals greatly facilitates germ line transmission of the mutation, thereby aiding the rapid and efficient generation of KO animal lines for medical research and agriculture.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Inseminação , Microinjeções/métodos , Oócitos , Suínos/genética , Animais , Canais de Cálcio/genética , Transferência Embrionária , Embrião de Mamíferos , Feminino , Fertilização , Feto , Células Germinativas , Cariótipo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Mosaicismo , Mutação , Fenótipo , RNA Guia de Cinetoplastídeos , Zigoto
17.
Drug Dev Ind Pharm ; 47(10): 1578-1586, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35007175

RESUMO

Allopurinol (AP) is the first line drug in treating hyperuricemia and gout in clinical by oral drug delivery, which is associated with severe adverse effects and the hepatic first-pass effect. Herein, we first proposed AP encapsulated dissolving microneedles (DMNs) for transdermal drug delivery to realize the sustained drug release and avoid the hepatic first-pass effect, which will help to reduce the adverse effects and improve the bioavailability of AP. DMNs were fabricated by a suspension solution casting method with precisely controlled dose. They had sufficient mechanical strength to penetrate through the skin and resulted in the formation of hundreds of micropores in skin. The results of in vitro and ex vivo release experiments demonstrated that the release profile of DMNs was independent with the dose of AP, and they indeed had much higher drug delivery efficiency (DDE) than the equal amount of AP in solutions. In vivo DDE reached to 38.9% within 1 h, and the drug residual can be served as a drug reservoir for sustained drug release. The result of pharmacodynamic study further confirmed that the sustained release and the anti-hyperuricemia effect of DMNs encapsulating AP were achieved. Moreover, transepidermal water loss significantly increased to 49.50 ± 3.82 g/m2·h after the application of DMNs and returned to normal levels (12.25 ± 0.21 g/m2·h) after 8 h, indicating that the DMNs were well tolerated. These results suggest that transdermal drug delivery of AP by using DMNs is an efficient and safe alternative to currently available routes of administration.


Assuntos
Alopurinol , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Agulhas , Preparações Farmacêuticas , Pele
18.
Cell Mol Neurobiol ; 41(6): 1339-1354, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32696288

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, in which amyloid precursor protein (APP) misprocessing and tau protein hyperphosphorylation are well-established pathogenic cascades. Despite extensive considerations, the central mediator of neuronal cell death upon AD remains under debate. Therefore, we examined the direct interplay between tauopathy and amyloidopathy processes. We employed primary culture neurons and examined pathogenic P-tau and Aß oligomers upon hypoxia treatment by immunofluorescence and immunoblotting. We observed both tauopathy and amyloidopathy processes upon the hypoxia condition. We also applied Aß1-42 or P-tau onto primary cultured neurons. We overexpressed P-tau in SH-SY5Y cells and found Aß accumulation. Furthermore, adult male rats received Aß1-42 or pathogenic P-tau in the dorsal hippocampus and were examined for 8 weeks. Learning and memory performance, as well as anxiety behaviors, were assessed by Morris water maze and elevated plus-maze tests. Both Aß1-42 and pathogenic P-tau significantly induced learning and memory deficits and enhanced anxiety behavior after treatment 2 weeks. Aß administration induced robust tauopathy distribution in the cortex, striatum, and corpus callosum as well as CA1. On the other hand, P-tau treatment developed Aß oligomers in the cortex and CA1 only. Our findings indicate that Aß1-42 and pathogenic P-tau may induce each other and cause almost identical neurotoxicity in a time-dependent manner, while tauopathy seems to be more distributable than amyloidopathy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Angiopatia Amiloide Cerebral/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Tauopatias/metabolismo , Proteínas tau/metabolismo , Proteínas tau/toxicidade , Peptídeos beta-Amiloides/administração & dosagem , Animais , Linhagem Celular Tumoral , Células Cultivadas , Angiopatia Amiloide Cerebral/induzido quimicamente , Angiopatia Amiloide Cerebral/patologia , Feminino , Humanos , Masculino , Camundongos , Microinjeções/métodos , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Tauopatias/induzido quimicamente , Tauopatias/patologia , Proteínas tau/administração & dosagem
19.
Toxins (Basel) ; 12(12)2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291335

RESUMO

Vincristine is a vinca alkaloid anti-mitotic drug with a broad spectrum of effects on solid and hematologic cancers. The major dose-limiting factor of this anti-cancer regimen is painful peripheral neuropathy. However, no gold-standard analgesic option has been used clinically. In this study, we investigated the effects and mechanism of bee venom acupuncture (BVA) to alleviate peripheral neuropathic pain induced by repeated intraperitoneal infusions of vincristine (1 mg/kg/day, days 1-5 and 8-12) in rats. Subcutaneous injection with bee venom (BV, 1.0 mg/kg) at the ST36 acupoint ameliorated cold and mechanical hypersensitivity (i.e., aberrant withdrawal responses in acetone drop and von Frey hair tests, respectively). In vivo extracellular recording demonstrated that BVA inhibited cutaneous cold (acetone) and mechanical (brush, press, and pinch) stimuli-elicited abnormal hyperexcitation of the spinal wide dynamic range (WDR) neurons in vincristine-treated rats. In addition, the microinjection of lidocaine into the ipsilateral locus coeruleus or the antagonism of the spinal α2-adrenergic receptors clearly reversed the effects of BVA on cold and mechanical hypersensitivity, indicating a vital role of the descending noradrenergic modulation in analgesia. These findings suggest that BVA could be a potential therapeutic option for vincristine-induced peripheral neuropathy.


Assuntos
Pontos de Acupuntura , Neurônios Adrenérgicos/efeitos dos fármacos , Venenos de Abelha/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Vincristina/toxicidade , Terapia por Acupuntura/métodos , Neurônios Adrenérgicos/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Masculino , Microinjeções/métodos , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Dermatol Surg ; 46(12): 1636-1641, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32897944

RESUMO

BACKGROUND: Melasma is an acquired disorder of hyperpigmentation that is often recalcitrant to current therapies. Microneedling is used to treat scars, striae, and rhytides and has a relatively low risk of post-treatment dyspigmentation. Several studies have examined its use in melasma. OBJECTIVE: To review the published evidence on the efficacy and safety of microneedling in the treatment of melasma. METHODS: A systematic review was performed. A meta-analysis could not be performed because of methodological differences across studies and data heterogeneity. RESULTS: Eight studies were included for analysis. Most studies assessed the utility of microneedling in combination with other topical therapies and detected some success. However, microneedling-mediated transdermal delivery of medications is not superior to microinjections of medications. There is less evidence supporting the use of microneedling as monotherapy. Microneedling, when used with a 1064-nm Q-switched Nd:YAG laser, may provide additional benefit, although with a risk of post-treatment dyspigmentation. CONCLUSION: Based on low-quality evidence, microneedling may play a role in the treatment of melasma, with the mechanism of action likely being the facilitation of delivery of topical therapies to the epidermis and dermis, and one ancillary benefit of this approach being the very low risk of postinflammatory hyperpigmentation.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Agulhamento Seco/métodos , Melanose/terapia , Administração Cutânea , Terapia Combinada/efeitos adversos , Terapia Combinada/instrumentação , Terapia Combinada/métodos , Fármacos Dermatológicos/efeitos adversos , Agulhamento Seco/efeitos adversos , Agulhamento Seco/instrumentação , Humanos , Microinjeções/efeitos adversos , Microinjeções/métodos , Agulhas/efeitos adversos , Adesivo Transdérmico/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA