Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Iran J Kidney Dis ; 18(2): 99-107, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660698

RESUMO

INTRODUCTION: We recently discovered that microvesicles (MVs)  derived from mesenchymal stem cells (MSCs) overexpressing  miRNA-34a can alleviate experimental kidney injury in mice. In  this study, we further explored the effects of miR34a-MV on renal  fibrosis in the unilateral ureteral obstruction (UUO) models.  Methods. Bone marrow MSCs were modified by lentiviruses  overexpressing miR-34a, and MVs were collected from the  supernatants of MSCs. C57BL6/J mice were divided into control,  unilateral ureteral obstruction (UUO), UUO + MV, UUO + miR-34aMV and UUO + miR-34a-inhibitor-MV groups. MVs were injected  to mice after surgery. The mice were then euthanized on day 7  and 14 of modeling, and renal tissues were collected for further  analyses by Hematoxylin and eosin, Masson's trichrome,  and Immunohistochemical (IHC) staining.  Results. The UUO + MV group exhibited a significantly reduced  degree of renal interstitial fibrosis with inflammatory cell infiltration,  tubular epithelial cell atrophy, and vacuole degeneration compared  with the UUO group. Surprisingly, overexpressing miR-34a enhanced  these effects of MSC-MV on the UUO mice.  Conclusion. Our study demonstrates that miR34a further enhances  the effects of MSC-MV on renal fibrosis in mice through the  regulation of epithelial-to-mesenchymal transition (EMT) and  Notch pathway. miR-34a may be a candidate molecular therapeutic  target for the treatment of renal fibrosis. DOI: 10.52547/ijkd.7673.


Assuntos
Micropartículas Derivadas de Células , Nefropatias , Rim , Células-Tronco Mesenquimais , MicroRNAs , Animais , Masculino , Camundongos , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais , Obstrução Ureteral
2.
Proteomics ; 24(11): e2300058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470197

RESUMO

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.


Assuntos
Neoplasias Colorretais , Exossomos , Perfilação da Expressão Gênica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
J Nanobiotechnology ; 19(1): 380, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34802444

RESUMO

Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSC-EVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3'-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1α)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1α-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer.


Assuntos
Hipóxia Celular/genética , Micropartículas Derivadas de Células , MicroRNAs , Neovascularização Patológica/genética , Mucosa Olfatória/citologia , Adulto , Animais , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
4.
Eur J Endocrinol ; 185(4): 539-552, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342596

RESUMO

OBJECTIVE: Sex steroid hormones like estrogens have a key role in the regulation of energy homeostasis and metabolism. In transwomen, gender-affirming hormone therapy like estradiol (in combination with antiandrogenic compounds) could affect metabolism as well. Given that the underlying pathophysiological mechanisms are not fully understood, this study assessed circulating estradiol-driven microRNAs (miRs) in transwomen and their regulation of genes involved in metabolism in mice. METHODS: Following plasma miR-sequencing (seq) in a transwomen discovery (n = 20) and validation cohort (n = 30), we identified miR-224 and miR-452. Subsequent systemic silencing of these miRs in male C57Bl/6 J mice (n = 10) was followed by RNA-seq-based gene expression analysis of brown and white adipose tissue in conjunction with mechanistic studies in cultured adipocytes. RESULTS: Estradiol in transwomen lowered plasma miR-224 and -452 carried in extracellular vesicles (EVs) while their systemic silencing in mice and cultured adipocytes increased lipogenesis (white adipose) but reduced glucose uptake and mitochondrial respiration (brown adipose). In white and brown adipose tissue, differentially expressed (miR target) genes are associated with lipogenesis (white adipose) and mitochondrial respiration and glucose uptake (brown adipose). CONCLUSION: This study identified an estradiol-drive post-transcriptional network that could potentially offer a mechanistic understanding of metabolism following gender-affirming estradiol therapy.


Assuntos
Micropartículas Derivadas de Células/genética , Estradiol/fisiologia , MicroRNAs/genética , Transexualidade , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adulto , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estradiol/sangue , Estradiol/farmacologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Terapia de Reposição Hormonal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Interferência de RNA/efeitos dos fármacos , Pessoas Transgênero , Transexualidade/genética , Transexualidade/metabolismo , Adulto Jovem
5.
Methods Mol Biol ; 2324: 339-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34165725

RESUMO

Pseudogenes, once considered the "junk remnants of genes," are found to significantly affect the regulatory network of healthy and cancer cells, as well as to be highly specific markers of cancer cell identity. Qualitative and quantitative analysis of pseudogenes has a diagnostic and prognostic value in cancer research via the detection of cell-free pseudogenic DNA circulating throughout the body. Exosomes, nanoparticles with a lipid membrane secreted by almost all types of cells, carry cellular-blueprint molecules, including pseudogenic DNA, as cancer-specific cargo. Therefore, it is vital to develop better laboratory techniques and protocols to identify exosome-associated pseudogenes.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Pseudogenes , Sequência de Bases , Biomarcadores Tumorais/genética , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/genética , Meios de Cultura , Meios de Cultivo Condicionados , DNA/sangue , DNA/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , DNA de Cadeia Simples/sangue , Células Progenitoras Endoteliais/citologia , Sangue Fetal/citologia , Glioblastoma/patologia , Humanos , Mutagênese Insercional , Proteína Homeobox Nanog/genética , Neoplasias/genética , Células-Tronco Neurais/citologia , Prognóstico , RNA Mensageiro/biossíntese , RNA Mensageiro/sangue , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Homologia de Sequência do Ácido Nucleico , Transfecção , Células Tumorais Cultivadas
6.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33830943

RESUMO

A complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.


Assuntos
Micropartículas Derivadas de Células/imunologia , Tolerância Imunológica/efeitos da radiação , Queratinócitos/imunologia , Raios Ultravioleta , Animais , Linhagem Celular , Micropartículas Derivadas de Células/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Fator de Ativação de Plaquetas/genética , Fator de Ativação de Plaquetas/imunologia , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/imunologia
7.
Commun Biol ; 4(1): 119, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500545

RESUMO

Extracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH. Release of miR-424 in small EVs was enhanced in cell lines (LNCaPabl), transgenic mice (Pb-Cre4;Ptenflox/flox;Rosa26ERG/ERG) and patient-derived xenograft (PDX) models of aggressive disease. EVs containing miR-424 promoted stem-like traits and tumor-initiating properties in normal prostate epithelial cells while enhanced tumorigenesis in transformed prostate epithelial cells. Intravenous administration of miR-424 positive EVs to mice, mimicking blood circulation, promoted miR-424 transfer and tumor growth in xenograft models. Circulating miR-424 positive EVs from patients with aggressive primary and metastatic tumors induced stem-like features when supplemented to prostate epithelial cells. This study establishes that EVs-mediated transfer of miR-424 across heterogeneous cell populations is an important mechanism of tumor self-sustenance, disease recurrence and progression. These findings might indicate novel approaches for the management and therapy of prostate cancer.


Assuntos
Transformação Celular Neoplásica/genética , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , MicroRNAs/genética , Modelos Teóricos , Invasividade Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
8.
Leukemia ; 34(12): 3126-3135, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929129

RESUMO

There are concepts in science that need time to overcome initial disbelief before finally arriving at the moment when they are embraced by the research community. One of these concepts is the biological meaning of the small, spheroidal vesicles released from cells, which are described in the literature as microparticles, microvesicles, or exosomes. In the beginning, this research was difficult, as it was hard to distinguish these small vesicles from cell debris or apoptotic bodies. However, they may represent the first language of cell-cell communication, which existed before a more specific intercellular cross-talk between ligands and receptors emerged during evolution. In this review article, we will use the term "extracellular microvesicles" (ExMVs) to refer to these small spheroidal blebs of different sizes surrounded by a lipid layer of membrane. We have accepted an invitation from the Editor-in-Chief to write this review in observance of the 20th anniversary of the 2001 ASH Meeting when our team demonstrated that, by horizontal transfer of several bioactive molecules, including mRNA species and proteins, ExMVs harvested from embryonic stem cells could modify hematopoietic stem/progenitor cells and expand them ex vivo. Interestingly, the result that moved ExMV research forward was published first in 2005 in Leukemia, having been previously rejected by other major scientific journals out of simple disbelief. Therefore, the best judge of a new concept is the passage of time, although the speed of its adoption is aided by perseverance and confidence in one's own data. In this perspective article, we will provide a brief update on the current status of, hopes for, and likely future of ExMV research as well as therapeutic and diagnostic applications, with a special emphasis on hematopoiesis.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Exossomos/fisiologia , Animais , Comunicação Celular/fisiologia , Micropartículas Derivadas de Células/genética , Células-Tronco Embrionárias/fisiologia , Exossomos/genética , Hematopoese/fisiologia , Humanos , RNA Mensageiro/genética
9.
J Am Heart Assoc ; 9(17): e015998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819189

RESUMO

Background Microvesicles are cell membrane-derived vesicles that have been shown to augment inflammation. Specifically, monocyte-derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV-infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV-encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.


Assuntos
Antivirais/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Micropartículas Derivadas de Células/genética , Infecções por HIV/metabolismo , Adulto , Animais , Fatores de Coagulação Sanguínea/metabolismo , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Antígeno 2 do Estroma da Médula Óssea/ultraestrutura , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/virologia , Feminino , HIV/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica/métodos , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/metabolismo , Prevalência , Proteínas Virais Reguladoras e Acessórias/metabolismo
10.
Mol Cell ; 78(6): 1192-1206.e10, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32470318

RESUMO

Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.


Assuntos
Proteínas de Transporte/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patologia , Quimiocina CCL1/metabolismo , Progressão da Doença , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Prognóstico , Fator de Transcrição STAT3/metabolismo , Hormônios Tireóideos/genética , Microambiente Tumoral , Proteínas de Ligação a Hormônio da Tireoide
11.
Oncogene ; 39(1): 187-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467431

RESUMO

Radiotherapy induces immune-related responses in cancer patients by various mechanisms. Here, we investigate the immunomodulatory role of tumor-derived microparticles (TMPs)-extracellular vesicles shed from tumor cells-following radiotherapy. We demonstrate that breast carcinoma cells exposed to radiation shed TMPs containing elevated levels of immune-modulating proteins, one of which is programmed death-ligand 1 (PD-L1). These TMPs inhibit cytotoxic T lymphocyte (CTL) activity both in vitro and in vivo, and thus promote tumor growth. Evidently, adoptive transfer of CTLs pre-cultured with TMPs from irradiated breast carcinoma cells increases tumor growth rates in mice recipients in comparison with control mice receiving CTLs pre-cultured with TMPs from untreated tumor cells. In addition, blocking the PD-1-PD-L1 axis, either genetically or pharmacologically, partially alleviates TMP-mediated inhibition of CTL activity, suggesting that the immunomodulatory effects of TMPs in response to radiotherapy is mediated, in part, by PD-L1. Overall, our findings provide mechanistic insights into the tumor immune surveillance state in response to radiotherapy and suggest a therapeutic synergy between radiotherapy and immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1/genética , Neoplasias da Mama/radioterapia , Micropartículas Derivadas de Células/imunologia , Imunomodulação/imunologia , Animais , Antígeno B7-H1/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/efeitos da radiação , Feminino , Xenoenxertos , Humanos , Evasão da Resposta Imune/imunologia , Evasão da Resposta Imune/efeitos da radiação , Imunomodulação/efeitos da radiação , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/efeitos da radiação , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos da radiação
12.
Eur Rev Med Pharmacol Sci ; 23(22): 10065-10071, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31799677

RESUMO

OBJECTIVE: To uncover the role of microvesicle-containing (MV-containing) miRNA-153-3p in inducing the apoptosis of proximal tubular epithelial cells and RIF (renal interstitial fibrosis), and its potential mechanism. MATERIALS AND METHODS: Mice were subjected to unilateral ureteral obstruction (UUO) to establish the in vivo RIF model. MVs were extracted from the obstructed kidney tissues of mice, to further isolate the RNAs. MiRNA-153-3p levels in RIF mice and MVs were determined. In vitro RIF model was constructed by TGF-ß1 induction in NRK-52E and NRK-49F cells. The regulatory effect of miRNA-153-3p on the apoptosis of tubular epithelial cells was examined. Subsequently, potential target gene of miRNA-153-3p was predicted and identified. Rescue experiments were finally carried out to uncover the role of miRNA-153-3p/Bcl-2 in influencing RIF. RESULTS: MiRNA-153-3p was upregulated in mice undergoing UUO, MVs extracted from obstructed kidney tissues of mice and TGF-ß1-induced NRK-52E and NRK-49F cells. The overexpression of miRNA-153-3p remarkably induced apoptosis in tubular epithelial cells. Bcl-2 was verified to be the target gene of miRNA-153-3p, and the Bcl-2 level was negatively regulated by miRNA-153-3p. Overexpression of Bcl-2 reversed the effect of miRNA-153-3p on inducing cell apoptosis. CONCLUSIONS: MV-containing miRNA-153-3p released by tubulointerstitial fibroblasts transmits to the proximal tubular epithelial cells via the damaged tubule basement membrane. It induces the apoptosis of proximal tubular epithelial cells by inhibiting Bcl-2 level and further aggravates RIF.


Assuntos
Micropartículas Derivadas de Células/genética , Nefropatias/patologia , Túbulos Renais Proximais/citologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Apoptose , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibrose , Nefropatias/genética , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
13.
FEBS Open Bio ; 9(12): 2159-2169, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31705785

RESUMO

Platelets are implicated in the pathophysiology of breast and other cancers through their role in exchanging biomolecules with tumor cells in the tumor microenvironment. Such exchange results in tumor-educated platelets with altered RNA expression profiles. Multiple lines of evidence indicate that platelet RNA profiles may be suitable as diagnostic biomarkers for cancer-related biological processes. In this study, we characterized the gene expression signatures of platelets in breast cancer (BC) by high-throughput sequencing and quantitative real-time RT-PCR. Our results indicate that the expression of TPM3 (tropomyosin 3) mRNA is significantly elevated in platelets from patients with BC compared with age-matched healthy control subjects. Furthermore, up-regulation of TPM3 mRNA in platelets was found to be significantly correlated with metastasis in patients with BC. Finally, we report that platelet TPM3 mRNA is delivered into BC cells through microvesicles and leads to enhanced migrative phenotype of BC cells. In summary, our findings suggest that the transfer of platelet TPM3 mRNA into cancer cells via microvesicles promotes cancer cell migration, and thus platelet-derived TPM3 mRNA may be a suitable biomarker for early diagnosis of metastatic BC.


Assuntos
Neoplasias da Mama/genética , Micropartículas Derivadas de Células/genética , Tropomiosina/metabolismo , Adulto , Idoso , Biomarcadores Tumorais , Plaquetas/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Processos Neoplásicos , RNA Mensageiro/genética , Transcriptoma/genética , Tropomiosina/fisiologia , Microambiente Tumoral/fisiologia
14.
J Cancer Res Ther ; 15(5): 1114-1119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603120

RESUMO

AIM OF STUDY: One of the new methods that have promising results is the use of cell-derived microvesicles (MVs) to kill tumor cells. Given that MVs contain apoptotic materials, genes, and proteins, they can interfere with the fate of adjacent cells. MATERIALS AND METHODS: In the present study, after adipose tissue-derived mesenchymal stem cells (AT-MSCs) isolation and characterization, MVs were derived from AT-MSCs and then characterized morphologically by standard error of the mean and size determination by DLS, and after that, the influence of MVs on human breast cancer cells (MCF-7) was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and apoptosis-related gene expression. The raw data were analyzed in SPSS.17 software. RESULTS: The results indicated that MVs have a size range of 500-1500 nm, and the viability of MCF-7 was significantly decreased when treated by different concentrations of MVs and it was confirmed when apoptosis-related genes' expression level was measured by real-time reverse transcription polymerase chain reaction whereas demonstrated that apoptosis genes including Bax, P53, P21, and EP300 (2- ΔΔ CT) and ΔCT values were expressed significantly in MCF-7 treated by MVs higher than those nontreated, and decrease of Bcl-2 expression level in MVs-treated MCF-7 was also significant as an antiapoptosis-related gene. CONCLUSIONS: Taking together, AT-MSC-derived MVs demonstrated anticancer or antitumoral properties on MCF-7 cells, and it could also be effective for other types of cancer cells.


Assuntos
Neoplasias da Mama/terapia , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Micropartículas Derivadas de Células/genética , Feminino , Expressão Gênica/genética , Humanos , Células MCF-7
15.
J Cell Mol Med ; 23(12): 7933-7945, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31576661

RESUMO

Many studies have shown that endothelial dysfunction is associated with a variety of cardiovascular diseases. The endothelium is one of the primary targets of circulating microvesicles. Besides, microRNAs emerge as important regulators of endothelial cell function. As a delivery system of microRNAs, microvesicles play an active and important role in regulating vascular endothelial function. In recent years, some studies have shown that microvesicles containing microRNAs regulate the pathophysiological changes in vascular endothelium, such as cell apoptosis, proliferation, migration and inflammation. These studies have provided some clues for the possible roles of microvesicles and microRNAs in vascular endothelial dysfunction-associated diseases, and opened the door towards discovering potential novel therapeutic targets. In this review, we provide an overview of the main characteristics of microvesicles and microRNAs, summarizing their potential role and mechanism in endothelial dysfunction, and discussing the clinical application and existing problems of microvesicles for better translational applications.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , MicroRNAs/metabolismo , Apoptose/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Plaquetas/enzimologia , Plaquetas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Micropartículas Derivadas de Células/enzimologia , Micropartículas Derivadas de Células/genética , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Humanos , Inflamação , MicroRNAs/genética , MicroRNAs/fisiologia
16.
J Nutr Biochem ; 74: 108242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665654

RESUMO

Breast cancer is one of the most frequent and malignant types of cancer in women, with an increasing morbidity and mortality rate; in particular, treatment of triple negative breast cancer remains a challenge, since the efforts made with targeted therapies were ineffective. Among surrounding cells influencing the biology of cancer cells, platelets are recognizing as novel players. Activated platelets release microvesicles (MVs) that, once delivered to cancer cells, modulate signaling pathways related to cell growth and dissemination; among factors contained in platelet-derived MVs, microRNAs are highly involved in cancer development. The growing interest in ω3 and ω6 polyunsaturated fatty acids (PUFAs) as adjuvants in anti-cancer therapy prompted us to investigate the ability of arachidonic acid (AA) and docosahexaenoic acid (DHA) to modulate MV biological functions. AA induced differential enhancement of platelet-specific microRNAs (miR-223 and miR-126), an effect further enhanced by the presence of DHA. MVs can be delivered to and microRNAs internalized by breast cancer cells, although with different efficiency; analysis of kinetics of MV delivery, indeed, suggested that tumor cells fine-tune the uptake of specific microRNA. Finally, we demonstrated that physiological delivery of platelet miR-223 and miR-126 induced cellular effects in breast cancer cells, including cell cycle arrest, inhibition of migration and sensitivity to cisplatin. These results have been confirmed by exogenous expression of miR-223 and miR-126 through transient transfection experiments. Our preliminary data suggest that ω6/ω3-PUFA supplementation, by modulating microRNA delivery, enhances platelet anti-tumor activities, thus opening new avenues for add-on therapies in cancer patients.


Assuntos
Ácido Araquidônico/farmacologia , Plaquetas/efeitos dos fármacos , Neoplasias da Mama/genética , Micropartículas Derivadas de Células/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Antineoplásicos/farmacologia , Plaquetas/citologia , Plaquetas/fisiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Micropartículas Derivadas de Células/transplante , Cisplatino/farmacologia , Suplementos Nutricionais , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , MicroRNAs/genética
17.
J Biol Chem ; 294(37): 13681-13696, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341019

RESUMO

The triple-negative phenotype is the most prevalent form of human breast cancer worldwide and is characterized by poor survival, high aggressiveness, and recurrence. Microvesicles (MV) are shredded plasma membrane components and critically mediate cell-cell communication, but can also induce cancer proliferation and metastasis. Previous studies have revealed that protease-activated receptor 2 (PAR2) contributes significantly to human triple-negative breast cancer (TNBC) progression by releasing nano-size MV and promoting cell proliferation, migration, and invasion. MV isolated from highly aggressive human TNBC cells impart metastatic potential to nonmetastatic cells. Over-expression of microRNA221 (miR221) has also been reported to enhance the metastatic potential of human TNBC, but miR221's relationship to PAR2-induced MV is unclear. Here, using isolated MV, immunoblotting, quantitative RT-PCR, FACS analysis, and enzymatic assays, we show that miR221 is translocated via human TNBC-derived MV, which upon fusion with recipient cells, enhance their proliferation, survival, and metastasis both in vitro and in vivo by inducing the epithelial-to-mesenchymal transition (EMT). Administration of anti-miR221 significantly impaired MV-induced expression of the mesenchymal markers Snail, Slug, N-cadherin, and vimentin in the recipient cells, whereas restoring expression of the epithelial marker E-cadherin. We also demonstrate that MV-associated miR221 targets phosphatase and tensin homolog (PTEN) in the recipient cells, followed by AKT Ser/Thr kinase (AKT)/NF-κB activation, which promotes EMT. Moreover, elevated miR221 levels in MV derived from human TNBC patients' blood could induce cell proliferation and metastasis in recipient cells. In summary, miR221 transfer from TNBC cells via PAR2-derived MV induces EMT and enhances the malignant potential of recipient cells.


Assuntos
Micropartículas Derivadas de Células/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Micropartículas Derivadas de Células/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética
18.
Prion ; 13(1): 106-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050590

RESUMO

OBJECTIVE: To evaluate whether EPC-MVs could promote bone regeneration by directly regulating osteoblast through miR-126. The underlying mechanisms were also explored. METHODS: EPCs were isolated from bone marrow mononuclear cells. EPC-MVs were collected from EPCs cultured medium. The lentivirus was used to induce miR-126 over-expression in EPCs and EPC-MVs. miR-126 expression was detected by qRT-PCR. The proliferation, migration, apoptosis and differentiation abilities of osteoblast cells MC3T3-E1 were analysed in the presence or absence of EPC-MVs or miR-126 overexpressed EPC-MVs (EPC-MVs-miR126). The proteins of Erk1/2 and Bcl-2 were analysed by western blot. Erk1/2 inhibitor was used for pathway exploration. RESULTS: EPC-MVs reduced apoptosis and promoted proliferation and migration of MC3T3-E1 cells, which could be enhanced by miR-126 enrichment (p< 0.05). Neither EPC-MVs nor EPC-MVs-miR126 had an effect on MC3T3-E1 cell osteogenic differentiation (p> 0.05). EPC-MVs-miR126 had better effects than EPC-MVs on upregulating the expressions of p-Erk1/2 and Bcl-2, which were abolished by Erk1/2 inhibitor. ERK1/2-Bcl-2 activity plays a crucial role in the regulation of EPC-MVs/EPC-MVs-miR126 on the effect of MC3T3-E1 cells. CONCLUSION: EPC-MVs promote proliferation and migration of MC3T3-E1 cell while reduced apoptosis via the miR-126/Erk1/2-Bcl-2 pathway. A combination of EPC-MVs and miR-126 might provide novel therapeutic targets for bone regeneration and fracture healing through regulating osteoblast.


Assuntos
Micropartículas Derivadas de Células/genética , Células Progenitoras Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Osteoblastos/citologia , Animais , Apoptose , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Regulação para Cima
19.
J Clin Endocrinol Metab ; 104(10): 4804-4814, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933285

RESUMO

CONTEXT: Microvesicles (MVs) are a class of membrane particles shed by any cell in the body in physiological and pathological conditions. They are considered to be key players in intercellular communication, and with a molecular content reflecting the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. OBJECTIVE: The effects of acute exercise on the plasma concentration of skeletal muscle-derived MVs (SkMVs) carrying metabolically important membrane proteins were examined. PARTICIPANTS: Thirteen men with obesity and type 2 diabetes mellitus (T2DM) and 14 healthy male controls with obesity exercised on a cycle ergometer for 60 minutes. INTERVENTIONS: Muscle biopsies and blood samples-obtained before exercise, immediately after exercise, and 3 hours into recovery-were collected for the analysis of long-chain fatty acid (LCFA) transport proteins CD36 (a scavenger receptor class B protein) and fatty acid transport protein 4 (FATP4) mRNA content in muscle and for flow cytometric studies on circulating SkMVs carrying either LCFA transport protein. RESULTS: Besides establishing a flow cytometric approach for the detection of circulating SkMVs and subpopulations carrying either CD36 or FATP4 and thereby adding proof to their existence, we demonstrated an overall exercise-induced change of SkMVs carrying these LCFA transport proteins. A positive correlation between exercise-induced changes in skeletal muscle CD36 mRNA expression and concentrations of SkMVs carrying CD36 was found in T2DM only. CONCLUSIONS: This approach could add important real-time information about the abundance of LCFA transport proteins present on activated muscle cells in subjects with impaired glucose metabolism.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Exercício Físico/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Músculo Esquelético/metabolismo , Biópsia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Estudos de Casos e Controles , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/metabolismo
20.
PLoS One ; 14(4): e0213069, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947313

RESUMO

Extracellular vesicles (EVs) released by cells have a role in intercellular communication to regulate a wide range of biological processes. Two types of EVs can be recognized. Exosomes, which are released from multi-vesicular bodies upon fusion with the plasma membrane, and ectosomes, which directly bud from the plasma membrane. How cells regulate the quantity of EV release is largely unknown. One of the initiating events in vesicle biogenesis is the regulated transport of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes. This process is catalyzed by P4-ATPases. The role of these phospholipid transporters in intracellular vesicle transport has been established in lower eukaryotes and is slowly emerging in mammalian cells. In Caenorhabditis elegans (C. elegans), deficiency of the P4-ATPase member TAT-5 resulted in enhanced EV shedding, indicating a role in the regulation of EV release. In this study, we investigated whether the mammalian ortholog of TAT-5, ATP9A, has a similar function in mammalian cells. We show that knockdown of ATP9A expression in human hepatoma cells resulted in a significant increase in EV release that was independent of caspase-3 activation. Pharmacological blocking of exosome release in ATP9A knockdown cells did significantly reduce the total number of EVs. Our data support a role for ATP9A in the regulation of exosome release from human cells.


Assuntos
Adenosina Trifosfatases/genética , Exossomos/genética , Vesículas Extracelulares/genética , Proteínas de Membrana Transportadoras/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspase 3/genética , Comunicação Celular/genética , Membrana Celular/genética , Micropartículas Derivadas de Células/genética , Endocitose/genética , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fosfolipídeos/metabolismo , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA