Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(1): e0192922, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602362

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Cinesinas , Animais , Vírus da Febre Suína Clássica/fisiologia , Dineínas/metabolismo , Endocitose , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virologia , Suínos , Internalização do Vírus , Replicação Viral/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico
2.
J Biol Chem ; 296: 100644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839152

RESUMO

Exposure of mucosal epithelial cells to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is known to disrupt epithelial cell junctions by impairing stathmin-mediated microtubule depolymerization. However, the pathological significance of this process and its underlying molecular mechanism remain unclear. Here we show that treatment of epithelial cells with pseudotyped HIV-1 viral particles or recombinant gp120 protein results in the activation of protein kinase G 1 (PKG1). Examination of epithelial cells by immunofluorescence microscopy reveals that PKG1 activation mediates the epithelial barrier damage upon HIV-1 exposure. Immunoprecipitation experiments show that PKG1 interacts with stathmin and phosphorylates stathmin at serine 63 in the presence of gp120. Immunoprecipitation and immunofluorescence microscopy further demonstrate that PKG1-mediated phosphorylation of stathmin promotes its autophagic degradation by enhancing the interaction between stathmin and the autophagy adaptor protein p62. Collectively, these results suggest that HIV-1 exposure exploits the PKG1/stathmin axis to affect the microtubule cytoskeleton and thereby perturbs epithelial cell junctions. Our findings reveal a novel molecular mechanism by which exposure to HIV-1 increases epithelial permeability, which has implications for the development of effective strategies to prevent mucosal HIV-1 transmission.


Assuntos
Permeabilidade da Membrana Celular , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Células Epiteliais/patologia , HIV-1/fisiologia , Microtúbulos/metabolismo , Estatmina/metabolismo , Movimento Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Infecções por HIV/virologia , Humanos , Microtúbulos/virologia , Fosforilação , Estatmina/genética
3.
PLoS Pathog ; 16(6): e1008597, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511265

RESUMO

During infection of neurons by alphaherpesviruses including Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) viral nucleocapsids assemble in the cell nucleus, become enveloped in the cell body then traffic into and down axons to nerve termini for spread to adjacent epithelia. The viral membrane protein US9p and the membrane glycoprotein heterodimer gE/gI play critical roles in anterograde spread of both HSV-1 and PRV, and several models exist to explain their function. Biochemical studies suggest that PRV US9p associates with the kinesin-3 motor KIF1A in a gE/gI-stimulated manner, and the gE/gI-US9p complex has been proposed to recruit KIF1A to PRV for microtubule-mediated anterograde trafficking into or along the axon. However, as loss of gE/gI-US9p essentially abolishes delivery of alphaherpesviruses to the axon it is difficult to determine the microtubule-dependent trafficking properties and motor-composition of Δ(gE/gI-US9p) particles. Alternatively, studies in HSV-1 have suggested that gE/gI and US9p are required for the appearance of virions in the axon because they act upstream, to help assemble enveloped virions in the cell body. We prepared Δ(gE/gI-US9p) mutant, and control parental PRV particles from differentiated cultured neuronal or porcine kidney epithelial cells and quantitated the efficiency of virion assembly, the properties of microtubule-dependent transport and the ability of viral particles to recruit kinesin motors. We find that loss of gE/gI-US9p has no significant effect upon PRV particle assembly but leads to greatly diminished plus end-directed traffic, and enhanced minus end-directed and bidirectional movement along microtubules. PRV particles prepared from infected differentiated mouse CAD neurons were found to be associated with either kinesin KIF1A or kinesin KIF5C, but not both. Loss of gE/gI-US9p resulted in failure to recruit KIF1A and KF5C, but did not affect dynein binding. Unexpectedly, while KIF5C was expressed in undifferentiated and differentiated CAD neurons it was only found associated with PRV particles prepared from differentiated cells.


Assuntos
Herpesvirus Suídeo 1 , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas/metabolismo , Lipoproteínas , Microtúbulos/metabolismo , Pseudorraiva , Proteínas do Envelope Viral , Proteínas Virais , Liberação de Vírus , Animais , Transporte Biológico Ativo , Linhagem Celular , Deleção de Genes , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microtúbulos/genética , Microtúbulos/virologia , Pseudorraiva/genética , Pseudorraiva/metabolismo , Pseudorraiva/patologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Viruses ; 12(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085463

RESUMO

Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.


Assuntos
Acetiltransferases/genética , Proteínas do Capsídeo/genética , Interações entre Hospedeiro e Microrganismos , Microtúbulos/metabolismo , Polyomavirus/metabolismo , Acetilação , Acetiltransferases/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Ciclo Celular , Linhagem Celular , Citoplasma/metabolismo , Fibroblastos/virologia , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Camundongos , Microtúbulos/virologia , Polyomavirus/genética , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
6.
Viruses ; 12(1)2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963741

RESUMO

Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/virologia , Interações Hospedeiro-Patógeno , Microtúbulos/fisiologia , Microtúbulos/virologia , Polyomavirus/patogenicidade , Animais , Proteínas do Capsídeo/genética , Citosol/virologia , Retículo Endoplasmático/virologia , Endossomos/virologia , Humanos , Camundongos , Polyomavirus/genética , Ligação Proteica , Replicação Viral
7.
Open Biol ; 9(2): 190012, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958097

RESUMO

Viruses are obligatory parasites that take advantage of intracellular niches to replicate. During infection, their genomes are carried in capsids across the membranes of host cells to sites of virion production by exploiting cellular behaviour and resources to guide and achieve all aspects of delivery and the downstream virus manufacturing process. Successful entry hinges on execution of a precisely tuned viral uncoating program where incoming capsids disassemble in consecutive steps to ensure that genomes are released at the right time, and in the right place for replication to occur. Each step of disassembly is cell-assisted, involving individual pathways that transmit signals to regulate discrete functions, but at the same time, these signalling pathways are organized into larger networks, which communicate back and forth in complex ways in response to the presence of virus. In this review, we consider the elegant strategy by which adenoviruses (AdVs) target and navigate cellular networks to initiate the production of progeny virions. There are many remarkable aspects about the AdV entry program; for example, the virus gains targeted control of a large well-defined local network neighbourhood by coupling several interacting processes (including endocytosis, autophagy and microtubule trafficking) around a collective reference state centred on the interactional topology and multifunctional nature of protein VI. Understanding the network targeting activity of protein VI, as well as other built-in mechanisms that allow AdV particles to be efficient at navigating the subsystems of the cell, can be used to improve viral vectors, but also has potential to be incorporated for use in entirely novel delivery systems.


Assuntos
Adenoviridae/fisiologia , Capsídeo/fisiologia , Citoplasma/virologia , Vírion/fisiologia , Replicação Viral/fisiologia , Adenoviridae/metabolismo , Capsídeo/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Humanos , Microtúbulos/metabolismo , Microtúbulos/virologia , Modelos Biológicos , Vírion/metabolismo
8.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651360

RESUMO

Following its entry into cells, pseudorabies virus (PRV) utilizes microtubules to deliver its nucleocapsid to the nucleus. Previous studies have shown that PRV VP1/2 is an effector of dynein-mediated capsid transport. However, the mechanism of PRV for recruiting microtubule motor proteins for successful neuroinvasion and neurovirulence is not well understood. Here, we provide evidence that PRV pUL21 is an inner tegument protein. We tested its interaction with the cytoplasmic light chains using a bimolecular fluorescence complementation (BiFC) assay and observed that PRV pUL21 interacts with Roadblock-1. This interaction was confirmed by coimmunoprecipitation (co-IP) assays. We also determined the efficiency of retrograde and anterograde axonal transport of PRV strains in explanted neurons using a microfluidic chamber system and investigated pUL21's contribution to PRV neuroinvasion in vivo Further data showed that the carboxyl terminus of pUL21 is essential for its interaction with Roadblock-1, and this domain contributes to PRV retrograde axonal transport in vitro and in vivo Our findings suggest that the carboxyl terminus of pUL21 contributes to PRV neuroinvasion.IMPORTANCE Herpesviruses are a group of DNA viruses that infect both humans and animals. Alphaherpesviruses are distinguished by their ability to establish latent infection in peripheral neurons. After entering neurons, the herpesvirus capsid interacts with cellular motor proteins and undergoes retrograde transport on axon microtubules. This elaborate process is vital to the herpesvirus lifecycle, but the underlying mechanism remains poorly understood. Here, we determined that pUL21 is an inner tegument protein of pseudorabies virus (PRV) and that it interacts with the cytoplasmic dynein light chain Roadblock-1. We also observed that pUL21 promotes retrograde transport of PRV in neuronal cells. Furthermore, our findings confirm that pUL21 contributes to PRV neuroinvasion in vivo Importantly, the carboxyl terminus of pUL21 is responsible for interaction with Roadblock-1, and this domain contributes to PRV neuroinvasion. This study offers fresh insights into alphaherpesvirus neuroinvasion and the interaction between virus and host during PRV infection.


Assuntos
Proteínas do Capsídeo/genética , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/patogenicidade , Neurônios/virologia , Transporte Axonal/genética , Axônios/virologia , Linhagem Celular , Linhagem Celular Tumoral , Dineínas/genética , Células HEK293 , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/virologia , Nucleocapsídeo/genética , Replicação Viral/genética
9.
PLoS Pathog ; 14(5): e1007055, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782552

RESUMO

Many viruses, including adenovirus, exhibit bidirectional transport along microtubules following cell entry. Cytoplasmic dynein is responsible for microtubule minus end transport of adenovirus capsids after endosomal escape. However, the identity and roles of the opposing plus end-directed motor(s) remain unknown. We performed an RNAi screen of 38 kinesins, which implicated Kif5B (kinesin-1 family) and additional minor kinesins in adenovirus 5 (Ad5) capsid translocation. Kif5B RNAi markedly increased centrosome accumulation of incoming Ad5 capsids in human A549 pulmonary epithelial cells within the first 30 min post infection, an effect dramatically enhanced by blocking Ad5 nuclear pore targeting using leptomycin B. The Kif5B RNAi phenotype was rescued by expression of RNAi-resistant Kif5A, B, or C, and Kif4A. Kif5B RNAi also inhibited a novel form of microtubule-based "assisted-diffusion" behavior which was apparent between 30 and 60 min p.i. We found the major capsid protein penton base (PB) to recruit kinesin-1, distinct from the hexon role we previously identified for cytoplasmic dynein binding. We propose that adenovirus uses independently recruited kinesin and dynein for directed transport and for a more random microtubule-based assisted diffusion behavior to fully explore the cytoplasm before docking at the nucleus, a mechanism of potential importance for physiological cargoes as well.


Assuntos
Cinesinas/fisiologia , Células A549 , Adenoviridae/genética , Adenoviridae/patogenicidade , Adenoviridae/fisiologia , Infecções por Adenoviridae/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/fisiologia , Linhagem Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Dineínas/metabolismo , Dineínas/fisiologia , Células Epiteliais , Células HEK293 , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Microtúbulos/virologia , Transcitose/fisiologia
10.
ACS Nano ; 12(1): 474-484, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29232101

RESUMO

When infecting host cells, influenza virus must move on microfilaments (MFs) at the cell periphery and then move along microtubules (MTs) through the cytosol to reach the perinuclear region for genome release. But how viruses switch from the actin roadway to the microtubule highway remains obscure. To settle this issue, we systematically dissected the role of related motor proteins in the transport of influenza virus between cytoskeletal filaments in situ and in real-time using quantum dot (QD)-based single-virus tracking (SVT) and multicolor imaging. We found that the switch between MF- and MT-based retrograde motor proteins, myosin VI (myoVI) and dynein, was responsible for the seamless transport of viruses from MFs to MTs during their infection. After virus entry by endocytosis, both the two types of motor proteins are attached to virus-carrying vesicles. MyoVI drives the viruses on MFs with dynein on the virus-carrying vesicle hitchhiking. After role exchanges at actin-microtubule intersections, dynein drives the virus along MTs toward the perinuclear region with myoVI remaining on the vesicle moving together. Such a "driver switchover" mechanism has answered the long-pending question of how viruses switch from MFs to MTs for their infection. It will also facilitate in-depth understanding of endocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H9N2/fisiologia , Microtúbulos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Citoesqueleto de Actina/patologia , Citoesqueleto de Actina/virologia , Animais , Cães , Dineínas/metabolismo , Endocitose , Células Madin Darby de Rim Canino , Microscopia Confocal , Microtúbulos/patologia , Microtúbulos/virologia , Cadeias Pesadas de Miosina/metabolismo , Imagem Óptica , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Internalização do Vírus
11.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615210

RESUMO

Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function.IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.


Assuntos
Zíper de Leucina , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Rhadinovirus/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Núcleo Celular/virologia , Fibroblastos/virologia , Zíper de Leucina/genética , Macaca mulatta , Centro Organizador dos Microtúbulos/virologia , Microtúbulos/virologia , Fases de Leitura Aberta , Replicação Viral
12.
PLoS Pathog ; 13(6): e1006463, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640879

RESUMO

Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.


Assuntos
Arabidopsis/virologia , Membrana Celular/virologia , Retículo Endoplasmático/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus do Mosaico do Tabaco/isolamento & purificação , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/virologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Microtúbulos/metabolismo , Microtúbulos/virologia , Plasmodesmos/metabolismo , Transporte Proteico/fisiologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/metabolismo
13.
J Cell Sci ; 130(13): 2185-2195, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515232

RESUMO

Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein-dynactin motor to traffic to the nuclear membrane and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single-particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1 (chromosome-region-maintenance-1; also known as XPO1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than ∼2 µm from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Adenoviridae/metabolismo , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/genética , Vírion/metabolismo , Adenoviridae/efeitos dos fármacos , Adenoviridae/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Ácidos Graxos Insaturados/farmacologia , Células HeLa , Humanos , Carioferinas/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Microtúbulos/virologia , Membrana Nuclear/genética , Membrana Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vírion/efeitos dos fármacos , Vírion/genética , Proteína Exportina 1
14.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250122

RESUMO

How murine leukemia virus (MLV) travels from the cell membrane to the nucleus and the mechanism for nuclear entry of MLV DNA in dividing cells still remain unclear. It seems likely that the MLV preintegration complex (PIC) interacts with cellular proteins to perform these tasks. We recently published that the microtubule motor cytoplasmic dynein complex and its regulator proteins interact with the MLV PIC at early times of infection, suggesting a functional interaction between the incoming viral particles, the dynein complex, and dynein regulators. To better understand the role of the dynein complex in MLV infection, we performed short hairpin RNA (shRNA) screening of the dynein light chains on MLV infection. We found that silencing of a specific light chain of the cytoplasmic dynein complex, DYNLRB2, reduced the efficiency of infection by MLV reporter viruses without affecting HIV-1 infection. Furthermore, the overexpression of DYNLRB2 increased infection by MLV. We conclude that the DYNLRB2 light chain of the cytoplasmic dynein complex is an important and specific piece of the host machinery needed for MLV infection.IMPORTANCE Retroviruses must reach the chromatin of their host to integrate their viral DNA, but first they must get into the nucleus. The cytoplasm is a crowded environment in which simple diffusion is slow, and thus viruses utilize retrograde transport along the microtubule network, mediated by the dynein complex. Different viruses use different components of this multisubunit complex. We have found that murine leukemia virus (MLV) associates functionally and specifically with the dynein light chain DYNLRB2, which is required for infection. Our study provides more insight into the molecular requirements for retrograde transport of the MLV preintegration complex and demonstrates, for the first time, a role for DYNLRB2 in viral infection.


Assuntos
Dineínas do Citoplasma/genética , Dineínas do Citoplasma/fisiologia , Interações Hospedeiro-Patógeno , Vírus da Leucemia Murina/fisiologia , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular/virologia , Células HEK293 , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Microtúbulos/virologia , Células NIH 3T3
15.
FEBS J ; 284(2): 301-323, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27885808

RESUMO

VP1, the major structural protein of the mouse polyomavirus (MPyV), is the major architectural component of the viral capsid. Its pentamers are able to self-assemble into capsid-like particles and to non-specifically bind DNA. Surface loops of the protein interact with sialic acid of ganglioside receptors. Although the replication cycle of the virus, including virion morphogenesis, proceeds in the cell nucleus, a substantial fraction of the protein is detected in the cytoplasm of late-phase MPyV-infected cells. In this work, we detected VP1 mainly in the cytoplasm of mammalian cells transfected with plasmid expressing VP1. In the cytoplasm, VP1-bound microtubules, including the mitotic spindle, and the interaction of VP1 with microtubules resulted in cell cycle block at the G2/M phase. Furthermore, in the late phase of MPyV infection and in cells expressing VP1, microtubules were found to be hyperacetylated. We then sought to understand how VP1 interacts with microtubules. Dynein is not responsible for the VP1-microtubule association, as neither overexpression of p53/dynamitin nor treatment with ciliobrevin-D (an inhibitor of dynein activity) prevented binding of VP1 to microtubules. A pull-down assay for VP1-interacting proteins identified the heat shock protein 90 (Hsp90) chaperone, and Hsp90 was also detected in the VP1-microtubule complexes. Although Hsp90 is known to be associated with acetylated microtubules, it does not mediate the interaction between VP1 and microtubules. Our study provides insight into the role of the major structural protein in MPyV replication, indicating that VP1 is a multifunctional protein that participates in the regulation of cell cycle progression in MPyV-infected cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Microtúbulos/metabolismo , Polyomavirus/metabolismo , Vírion/metabolismo , Acetilação , Animais , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Células Epiteliais/virologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/virologia , Camundongos , Microtúbulos/virologia , Células NIH 3T3 , Plasmídeos/química , Plasmídeos/metabolismo , Polyomavirus/genética , Ligação Proteica , Transfecção , Vírion/genética
16.
Arch Virol ; 162(3): 677-686, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858289

RESUMO

Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 µM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0-12 hour post inoculation (hpi) while at 20-24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8-12 hpi. At 20-24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/metabolismo , Microtúbulos/virologia , Doenças dos Suínos/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Infecções por Circoviridae/virologia , Circovirus/genética , Dineínas/genética , Dineínas/metabolismo , Interações Hospedeiro-Patógeno , Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo
17.
J Virol Methods ; 237: 1-9, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27555479

RESUMO

Equine herpesvirus type 1 (EHV-1), a member of Alphaherpesvirinae, has a broad host range in vitro, allowing for study of the mechanisms of productive viral infection, including intracellular transport in various cell cultures. In the current study, quantitative methods (scanning cytometry and real-time PCR) and confocal-microscopy-based image analysis were used to investigate the contribution of microtubules and neurofilaments in the transport of virus in primary murine neurons separately infected with two EHV-1 strains. Confocal-microscopy analysis revealed that viral antigen co-localized with the ß-tubulin fibres within the neurites of infected cells. Alterations in ß-tubulin and neurofilaments were evaluated by confocal microscopy and scanning cytometry. Real-time PCR analysis demonstrated that inhibitor-induced (nocodazole, EHNA) disruption of microtubules and dynein significantly reduced EHV-1 replication in neurons. Our results suggest that microtubules together with the motor protein - dynein, are involved in EHV-1 replication process in neurons. Moreover, the data presented here and our earlier results support the hypothesis that microtubules and actin filaments play an important role in the EHV-1 transport in primary murine neurons, and that both cytoskeletal structures complement each-other.


Assuntos
Citoesqueleto/ultraestrutura , Herpesvirus Equídeo 1/fisiologia , Citometria de Varredura a Laser/métodos , Microscopia Confocal/métodos , Neurônios/virologia , Animais , Células Cultivadas , Dineínas/ultraestrutura , Cavalos , Processamento de Imagem Assistida por Computador/métodos , Filamentos Intermediários/ultraestrutura , Filamentos Intermediários/virologia , Camundongos , Microtúbulos/ultraestrutura , Microtúbulos/virologia , Replicação Viral
18.
Nat Commun ; 7: 12203, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417143

RESUMO

The accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver. HCV infection increases septin 9 expression and induces its assembly into filaments. Septin 9 regulates LD growth and perinuclear accumulation in a manner dependent on dynamic microtubules. The effects of septin 9 on LDs are also dependent on binding to PtdIns5P, which, in turn, controls the formation of septin 9 filaments and its interaction with microtubules. This previously undescribed cooperation between PtdIns5P and septin 9 regulates oleate-induced accumulation of LDs. Overall, our data offer a novel route for LD growth through the involvement of a septin 9/PtdIns5P signalling pathway.


Assuntos
Hepacivirus/patogenicidade , Gotículas Lipídicas/metabolismo , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Septinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Hepacivirus/fisiologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Microtúbulos/virologia , Ácido Oleico/farmacologia , Septinas/genética , Replicação Viral
19.
J Gastroenterol Hepatol ; 31(2): 302-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26414381

RESUMO

While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.


Assuntos
Núcleo Celular/virologia , Hepatite B Crônica/virologia , Hepatite B , Hepatócitos/virologia , Transporte Ativo do Núcleo Celular , Doença Aguda , Animais , Microambiente Celular , DNA Circular , DNA Viral , Endocitose , Endossomos/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Hepatócitos/ultraestrutura , Humanos , Estágios do Ciclo de Vida , Lisossomos/virologia , Potenciais da Membrana/fisiologia , Microtúbulos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio , Receptores Virais , Simportadores , Replicação Viral
20.
Sci Rep ; 5: 10745, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073783

RESUMO

Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Microtúbulos/ultraestrutura , Neurônios/ultraestrutura , Vírion/ultraestrutura , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Tomografia com Microscopia Eletrônica , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/virologia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/virologia , Neurônios/efeitos dos fármacos , Neurônios/virologia , Nocodazol/farmacologia , Cultura Primária de Células , Quinazolinas/farmacologia , Sirolimo/farmacologia , Vírion/efeitos dos fármacos , Vírion/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA