Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.065
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731827

RESUMO

The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 µm as primary pores, 40-70 µm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.


Assuntos
Regeneração Óssea , Tíbia , Alicerces Teciduais , Animais , Cães , Alicerces Teciduais/química , Tíbia/diagnóstico por imagem , Projetos Piloto , Osteogênese , Porosidade , Microtomografia por Raio-X , Durapatita , Transplante Ósseo/métodos , Substitutos Ósseos
2.
Cell ; 187(10): 2502-2520.e17, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729110

RESUMO

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.


Assuntos
Imageamento Tridimensional , Neoplasias da Próstata , Humanos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Masculino , Prognóstico , Aprendizado Profundo , Microtomografia por Raio-X/métodos , Aprendizado de Máquina Supervisionado
3.
Int J Implant Dent ; 10(1): 24, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722448

RESUMO

PURPOSE: The objective of the present study was to ascertain the effect of immediate occlusal loading after implant placement on osseointegration and the micro/nanostructure of the surrounding bone. METHODS: After extraction of a rat maxillary right second molar, an implant was placed immediately with initial fixation (2 N< ). The implants were placed to avoid occlusal loading due to mastication, and in the loaded group, a superstructure was fabricated and subjected to occlusal loading. Bone morphometry, collagen fiber anisotropy, and biological apatite (BAp) crystallite alignment were quantitatively evaluated in both groups after extraction and fixation of the jaw bone at Days 7 and 21 after surgery. RESULTS: Osseointegration was observed in both groups. Bone morphometry showed significant differences in bone volume, trabecular number, trabecular thickness and bone mineral density (BMD) at Days 21 postoperatively (P < 0.05). A significant difference was also found in the trabecular separation at Days 7 postoperatively (P < 0.05). In the evaluation of collagen fiber anisotropy, collagen fiber bundles running differently from the existing bone were observed in both groups. In terms of BAp crystallite alignment, a specific structure was observed in the reconstructed new bone after implantation, and preferential orientation of BAp crystallite alignment was observed in the longitudinal direction of the implants in the Day 21 postoperative loaded group. CONCLUSION: When sufficient initial fixation is achieved at the time of dental implant placement, then the applied masticatory load may contribute to rapidly achieving not only bone volume, but also adequate bone quality after implant placement.


Assuntos
Carga Imediata em Implante Dentário , Osseointegração , Animais , Ratos , Osseointegração/efeitos dos fármacos , Masculino , Densidade Óssea/fisiologia , Implantes Dentários , Ratos Wistar , Maxila/cirurgia , Colágeno/metabolismo , Microtomografia por Raio-X
4.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735899

RESUMO

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Estudos de Viabilidade , Imageamento Tridimensional , Microtomografia por Raio-X , Humanos , Condrossarcoma/diagnóstico por imagem , Condrossarcoma/patologia , Microtomografia por Raio-X/métodos , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Masculino , Feminino , Coloração e Rotulagem/métodos
5.
Sci Rep ; 14(1): 10227, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702443

RESUMO

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Assuntos
Densidade Óssea , Osteoporose , Ovariectomia , Via de Sinalização Wnt , Animais , Ovariectomia/efeitos adversos , Via de Sinalização Wnt/efeitos dos fármacos , Feminino , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Densidade Óssea/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Gema de Ovo/química , Gema de Ovo/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas do Ovo/farmacologia , Proteínas do Ovo/metabolismo , Peptídeos/farmacologia , beta Catenina/metabolismo , Fosfatase Alcalina/metabolismo , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Microtomografia por Raio-X
6.
BMC Vet Res ; 20(1): 189, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734649

RESUMO

BACKGROUND: Hydrops fetalis (HF) is fluid accumulation in fetus body cavities and subcutaneous tissue. The condition has been described in various farm and companion animal species, including dogs. Most of cases result from a heart defect. Exact nature of this defect is rarely clarified. CASE PRESENTATION: A newborn, male French bulldog puppy with severe HF underwent a full anatomopathological examination to diagnose the primary cause of HF. Based on the anatomopathological examination, fetal ultrasound, and micro-computed tomography, transposition of the great arteries with hypoplasia of the ascending aorta, aortic arch interruption, ostium secundum atrial septal defect, severe tricuspid valve dysplasia, as well as hypoplasia of pulmonary vessels and lungs were diagnosed. CONCLUSIONS: This is the first report of HF caused by severe, complex congenital heart defects with concurrent pulmonary vessel and lung hypoplasia.


Assuntos
Doenças do Cão , Cardiopatias Congênitas , Hidropisia Fetal , Pulmão , Microtomografia por Raio-X , Animais , Hidropisia Fetal/veterinária , Hidropisia Fetal/diagnóstico por imagem , Masculino , Pulmão/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/anormalidades , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/congênito , Doenças do Cão/patologia , Cães , Cardiopatias Congênitas/veterinária , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/complicações , Microtomografia por Raio-X/veterinária , Animais Recém-Nascidos
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612467

RESUMO

Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Fusão Vertebral , Humanos , Animais , Ratos , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612562

RESUMO

Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.


Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , Animais , Camundongos , Consolidação da Fratura , Osteogênese , Microtomografia por Raio-X , Inflamação
9.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
10.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621925

RESUMO

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogênicas c-akt , Sêmen , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente
11.
Arch Oral Biol ; 162: 105964, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582010

RESUMO

OBJECTIVE: This study aimed to explore the effects of small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells (L-D-sEV) on periodontal ligament cells from periodontitis affected teeth (p-PDLCs) in vitro and experimental periodontitis in mice. DESIGN: In vitro, the biological function of p-PDLCs and the underlying molecular mechanism were investigated by flow cytometry, Western blot, and quantitative real-time PCR (qRT-PCR) analysis. Eighteen-eight-week-old male C57BL/6 mice were randomly divided into three groups: control (Con), periodontitis (Peri), and L-D-sEV groups. Mice periodontitis model was induced by placing the 5-0 silk thread (around the maxillary second molar) and P.gingivalis (1 ×107 CFUs per mouse). In vivo, the alveolar bone loss, osteoclast activity, and macrophage polarization were measured by micro-computed tomography and histological analysis. RESULTS: In vitro, the RANKL/OPG ratio and phosphorylation of JNK and P38 protein levels of p-PDLCs were significantly decreased after L-D-sEV administration. Besides, flow cytometry and qRT-PCR analysis showed that L-D-sEV reduced apoptosis of p-PDLCs, down-regulated apoptosis-related genes Caspase-3 and BCL-2-Associated X expression, and up-regulated B-cell lymphoma-2 gene levels. In vivo, L-D-sEV administration significantly reduced alveolar bone loss, inhibited osteoclast activity, and induced M2 polarization. The histological analysis showed that iNOS/CD206, RANKL/OPG, p-JNK/JNK, and p-P38/P38 ratios were significantly lower in the L-D-sEV group than in the Peri group. CONCLUSIONS: L-D-sEV administration alleviated alveolar bone loss by mediating RANKL/OPG-related osteoclast activity and M2 macrophage polarization, alleviating p-PDLCs apoptosis and proliferation via the JNK and P38 pathways.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Masculino , Animais , Perda do Osso Alveolar/patologia , Lipopolissacarídeos/farmacologia , Microtomografia por Raio-X , Saco Dentário/metabolismo , Camundongos Endogâmicos C57BL , Periodontite/metabolismo , Apoptose , Modelos Animais de Doenças
12.
PLoS One ; 19(4): e0299896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568900

RESUMO

The objective was to evaluate the effect of glide path and coronal flaring on the dentin volume removal and percentage of touched walls in curved canals using two heat-treated rotary files. The mesiobuccal canal of forty-eight, randomly selected, extracted mandibular molars was divided into two groups of 24 each, according to the type of instrument used (RACE EVO and EdgeSequel rotary files). Each group was further divided into three subgroups; Group (A): Control using one file shaped to 04/30, Group (B) with a glide path (EdgeGlidePath (EGP)), and Group (C): with a glide path and coronal flaring (EGP and EdgeTaper Platinum (ETP) SX file respectively). The root canals were then instrumented using the assigned instruments. The assessment was carried out using micro-CT. The comparison of the mean values of the tested groups about dentin volume removal and percentage of untouched walls did not reach statistical significance (p<0.05). Glide path and coronal flaring had an insignificant effect on the dentin volume removal and percentage of untouched walls in curved canals.


Assuntos
Temperatura Alta , Níquel , Preparo de Canal Radicular , Microtomografia por Raio-X/métodos , Preparo de Canal Radicular/métodos , Ligas , Titânio , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/cirurgia , Desenho de Equipamento
13.
FASEB J ; 38(7): e23594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573451

RESUMO

A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.


Assuntos
Osteoartrite , Oxigênio , Animais , Ratos , Microtomografia por Raio-X , Hipóxia , Osteoartrite/etiologia , Remodelação Óssea
14.
BMC Med Educ ; 24(1): 451, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658934

RESUMO

BACKGROUND: In otosurgical training, cadaveric temporal bones are primarily used to provide a realistic tactile experience. However, using cadaveric temporal bones is challenging due to their limited availability, high cost, and potential for infection. Utilizing current three-dimensional (3D) technologies could overcome the limitations associated with cadaveric bones. This study focused on how a 3D-printed middle ear model can be used in otosurgical training. METHODS: A cadaveric temporal bone was imaged using microcomputed tomography (micro-CT) to generate a 3D model of the middle ear. The final model was printed from transparent photopolymers using a laser-based 3D printer (vat photopolymerization), yielding a 3D-printed phantom of the external ear canal and middle ear. The feasibility of this phantom for otosurgical training was evaluated through an ossiculoplasty simulation involving ten otosurgeons and ten otolaryngology-head and neck surgery (ORL-HNS) residents. The participants were tasked with drilling, scooping, and placing a 3D-printed partial ossicular replacement prosthesis (PORP). Following the simulation, a questionnaire was used to collect the participants' opinions and feedback. RESULTS: A transparent photopolymer was deemed suitable for both the middle ear phantom and PORP. The printing procedure was precise, and the anatomical landmarks were recognizable. Based on the evaluations, the phantom had realistic maneuverability, although the haptic feedback during drilling and scooping received some criticism from ORL-HNS residents. Both otosurgeons and ORL-HNS residents were optimistic about the application of these 3D-printed models as training tools. CONCLUSIONS: The 3D-printed middle ear phantom and PORP used in this study can be used for low-threshold training in the future. The integration of 3D-printed models in conventional otosurgical training holds significant promise.


Assuntos
Cadáver , Orelha Média , Modelos Anatômicos , Impressão Tridimensional , Osso Temporal , Humanos , Orelha Média/cirurgia , Osso Temporal/cirurgia , Osso Temporal/diagnóstico por imagem , Prótese Ossicular , Otolaringologia/educação , Microtomografia por Raio-X , Treinamento por Simulação , Procedimentos Cirúrgicos Otológicos/educação , Procedimentos Cirúrgicos Otológicos/instrumentação , Internato e Residência
15.
PeerJ ; 12: e17178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590702

RESUMO

Gregory's diverticulum, a digestive tract structure unique to a derived group of sand dollars (Echinoidea: Scutelliformes), is filled with sand grains obtained from the substrate the animals inhabit. The simple methods of shining a bright light through a specimen or testing response to a magnet can reveal the presence of a mineral-filled diverticulum. Heavy minerals with a specific gravity of >2.9 g/cm3 are selectively concentrated inside the organ, usually at concentrations one order of magnitude, or more, greater than found in the substrate. Analyses of diverticulum content for thirteen species from nine genera, using optical mineralogy, powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, as well as micro-computed tomography shows the preference for selection of five major heavy minerals: magnetite (Fe3O4), hematite (Fe2O3), ilmenite (FeTiO3), rutile (TiO2), and zircon (ZrSiO4). Minor amounts of heavy or marginally heavy amphibole, pyroxene and garnet mineral grains may also be incorporated. In general, the animals exhibit a preference for mineral grains with a specific gravity of >4.0 g/cm3, although the choice is opportunistic and the actual mix of mineral species depends on the mineral composition of the substrate. The animals also select for grain size, with mineral grains generally in the range of 50 to 150 µm, and do not appear to alter this preference during ontogeny. A comparison of analytical methods demonstrates that X-ray attenuation measured using micro-computed tomography is a reliable non-destructive method for heavy mineral quantification when supported by associated analyses of mineral grains extracted destructively from specimens or from substrate collected together with the specimens. Commonalities in the electro-chemical surface properties of the ingested minerals suggest that such characteristics play an important role in the selection process.


Assuntos
Titânio , Zircônio , Animais , Titânio/química , Microtomografia por Raio-X , Minerais/análise , Ferro/química , Ouriços-do-Mar
16.
Acta Biomater ; 180: 104-114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583750

RESUMO

In the field of orthopedic surgery, there is an increasing need for the development of bone replacement materials for the treatment of bone defects. One of the main focuses of biomaterials engineering are advanced bioceramics like mesoporous bioactive glasses (MBG´s). The present study compared the new bone formation after 12 weeks of implantation of MBG scaffolds with composition 82,5SiO2-10CaO-5P2O5-x 2.5SrO alone (MBGA), enriched with osteostatin, an osteoinductive peptide, (MBGO) or enriched with bone marrow aspirate (MBGB) in a long bone critical defect in radius bone of adult New Zealand rabbits. New bone formation from the MBG scaffold groups was compared to the gold standard defect filled with iliac crest autograft and to the unfilled defect. Radiographic follow-up was performed at 2, 6, and 12 weeks, and microCT and histologic examination were performed at 12 weeks. X-Ray study showed the highest bone formation scores in the group with the defect filled with autograft, followed by the MBGB group, in addition, the microCT study showed that bone within defect scores (BV/TV) were higher in the MBGO group. This difference could be explained by the higher density of newly formed bone in the osteostatin enriched MBG scaffold group. Therefore, MBG scaffold alone and enriched with osteostatin or bone marrow aspirate increase bone formation compared to defect unfilled, being higher in the osteostatin group. The present results showed the potential to treat critical bone defects by combining MBGs with osteogenic peptides such as osteostatin, with good prospects for translation into clinical practice. STATEMENT OF SIGNIFICANCE: Treatment of bone defects without the capacity for self-repair is a global problem in the field of Orthopedic Surgery, as evidenced by the fact that in the U.S alone it affects approximately 100,000 patients per year. The gold standard of treatment in these cases is the autograft, but its use has limitations both in the amount of graft to be obtained and in the morbidity produced in the donor site. In the field of materials engineering, there is a growing interest in the development of a bone substitute equivalent. Mesoporous bioactive glass (MBG´s) scaffolds with three-dimensional architecture have shown great potential for use as a bone substitutes. The osteostatin-enriched Sr-MBG used in this long bone defect in rabbit radius bone in vivo study showed an increase in bone formation close to autograft, which makes us think that it may be an option to consider as bone substitute.


Assuntos
Substitutos Ósseos , Vidro , Alicerces Teciduais , Animais , Coelhos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Alicerces Teciduais/química , Vidro/química , Porosidade , Diáfises/patologia , Diáfises/diagnóstico por imagem , Diáfises/efeitos dos fármacos , Microtomografia por Raio-X , Osteogênese/efeitos dos fármacos , Cerâmica/química , Cerâmica/farmacologia , Masculino , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fragmentos de Peptídeos
17.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38637003

RESUMO

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Assuntos
Células Endoteliais , Gengiva , Células Endoteliais da Veia Umbilical Humana , Periodontite , Proteínas de Ligação a Fosfato , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Piroptose , Animais , Camundongos , Humanos , Periodontite/metabolismo , Periodontite/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gengiva/patologia , Gengiva/metabolismo , Gengiva/citologia , Proteínas de Ligação a Fosfato/metabolismo , Células Endoteliais/metabolismo , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtomografia por Raio-X , Modelos Animais de Doenças , Porphyromonas gingivalis
18.
Biol Pharm Bull ; 47(3): 669-679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508765

RESUMO

Osteoporosis is caused by imbalance between osteogenesis and bone resorption, thus, osteogenic drugs and resorption inhibitors are used for treatment of osteoporosis. The present study examined the effects of (R)-4-(1-hydroxyethyl)-3-{4-[2-(tetrahydropyran-4-yloxy)ethoxy]phenoxy}benzamide (KY-273), a diphenyl ether derivative, on CDK8/19 activity, osteoblast differentiation and femoral bone using micro-computed tomography in female rats. KY-273 potently inhibited CDK8/19 activity, promoted osteoblast differentiation with an increase in alkaline phosphatase (ALP) activity, and gene expression of type I collagen, ALP and BMP-4 in mesenchymal stem cells (ST2 cells). In female rat femur, ovariectomy decreased metaphyseal trabecular bone volume (Tb.BV), mineral content (Tb.BMC), yet had no effect on metaphyseal and diaphyseal cortical bone volume (Ct.BV), mineral content (Ct.BMC) and strength parameters (BSPs). In ovaries-intact and ovariectomized rats, oral administration of KY-273 (10 mg/kg/d) for 6 weeks increased metaphyseal and diaphyseal Ct.BV, Ct.BMC, and BSPs without affecting medullary volume (Med.V), but did not affect Tb.BV and Tb.BMC. In ovariectomized rats, alendronate (3 mg/kg/d) caused marked restoration of Tb.BV, Tb.BMC and structural parameters after ovariectomy, and increased metaphyseal but not diaphyseal Ct.BV, Ct.BMC, and BSPs. In ovaries-intact and ovariectomized rats, by the last week, KY-273 increased bone formation rate/bone surface at the periosteal but not the endocortical side. These findings indicate that KY-273 causes osteogenesis in cortical bone at the periosteal side without reducing Med.V. In conclusion, KY-273 has cortical-bone-selective osteogenic effects by osteoblastogenesis via CDK8/19 inhibition in ovaries-intact and ovariectomized rats, and is an orally active drug candidate for bone diseases such as osteoporosis in monotherapy and combination therapy.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Feminino , Animais , Osteogênese , Densidade Óssea , Ratos Sprague-Dawley , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Ovariectomia , Minerais/farmacologia , Quinase 8 Dependente de Ciclina
19.
J Appl Biomater Funct Mater ; 22: 22808000241240296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509449

RESUMO

Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (n = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.


Assuntos
Consolidação da Fratura , Prótese de Quadril , Humanos , Animais , Ratos , Idoso , Microtomografia por Raio-X , Ratos Sprague-Dawley , Polietilenos/efeitos adversos , Macrófagos , Falha de Prótese , Prótese de Quadril/efeitos adversos
20.
J Cell Mol Med ; 28(7): e18242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509736

RESUMO

Articular cartilage defect is challenged by insufficient regenerative ability of cartilage. Catalpol (CA), the primary active component of Rehmanniae Radix, could exert protective effects against various diseases. However, the impact of CA on the treatment of articular cartilage injuries is still unclear. In this study, full-thickness articular cartilage defect was induced in a mouse model via surgery. The animals were intraperitoneally injected with CA for 4 or 8 weeks. According to the results of macroscopic observation, micro-computed tomography CT (µCT), histological and immunohistochemistry staining, CA treatment could promote mouse cartilage repair, resulting in cartilage regeneration, bone structure improvement and matrix anabolism. Specifically, an increase in the expression of CD90, the marker of mesenchymal stem cells (MSCs), in the cartilage was observed. In addition, we evaluated the migratory and chondrogenic effects of CA on MSCs. Different concentration of CA was added to C3H10 T1/2 cells. The results showed that CA enhanced cell migration and chondrogenesis without affecting proliferation. Collectively, our findings indicate that CA may be effective for the treatment of cartilage defects via stimulation of endogenous MSCs.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Glucosídeos Iridoides , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/patologia , Microtomografia por Raio-X , Diferenciação Celular , Doenças das Cartilagens/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA