Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Biol Cell ; 33(1): ar8, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757852

RESUMO

Here we report on the related TBC/RabGAPs EPI64A and EPI64B and show that they function to organize the apical aspect of epithelial cells. EPI64A binds the scaffolding protein EBP50/NHERF1, which itself binds active ezrin in epithelial cell microvilli. Epithelial cells additionally express EPI64B that also localizes to microvilli. However, EPI64B does not bind EBP50 and both proteins are shown to have a microvillar localization domain that spans the RabGAP domains. CRISPR/Cas9 was used to inactivate expression of each protein individually or both in Jeg-3 and Caco2 cells. In Jeg-3 cells, loss of EPI64B resulted in a reduction of apical microvilli, and a further reduction was seen in the double knockout, mostly likely due to misregulation of Rab8 and Rab35. In addition, apical junctions were partially disrupted in cells lacking EPI64A and accentuated in the double knockout. In Caco2 loss of EPI64B resulted in wavy junctions, whereas loss of both EPI64A and EPI64B had a severe phenotype often resulting in cells with a stellate apical morphology. In the knockout cells, the basal region of the cell remained unchanged, so EPI64A and EPI64B specifically localize to and regulate the morphology of the apical domain of polarized epithelial cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação , Células CACO-2 , Linhagem Celular Tumoral , Polaridade Celular , Proteínas do Citoesqueleto , Células Epiteliais/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Microvilosidades/genética , Microvilosidades/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34815247

RESUMO

Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the MYO5B gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID. This founder mutation was very rare in public databases and is likely specific to patients of Syrian ancestry. We present a detailed account of both patients' clinical histories to fully characterize the effect of this variant and expand the genotype-phenotype databases for MVID patients from the Middle East.


Assuntos
Infecções por Citomegalovirus , Miosina Tipo V , Infecções por Citomegalovirus/metabolismo , Humanos , Síndromes de Malabsorção , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas/genética , Síria
3.
Prenat Diagn ; 42(1): 136-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34816459

RESUMO

BACKGROUNDS: Microvillus inclusion disease (MVID) characterizes as intractable life-threatening watery diarrhea malnutrition after birth. MATERIALS & METHODS: Here we describe two patients with prenatal ultrasound findings of bowel dilation or increased amniotic fluid volume presented intractable diarrhea after birth. Exome sequencing and Intestinal biopsy were performed for the patients and their parents to reveal the underlying causes. The mutations were verified by Sanger sequencing and quantitative polymerase chain reaction. RESULTS: Exome sequencing revealed that both of the patients carrying MYO5B compound heterozygote mutations that were inherited from their parents. CONCLUSION: Here we describe two cases with MVID caused by MYO5B deficiency, which was the most common caused with prenatal ultrasound findings of bowel dilation and increased amniotic fluid volume. Due to the lack of effective curative therapies, early diagnosis even in prenatal of MVID can provide parents with better genetic counseling on the fetal prognosis.


Assuntos
Síndromes de Malabsorção/etiologia , Microvilosidades/patologia , Mucolipidoses/etiologia , Cadeias Pesadas de Miosina/deficiência , Miosina Tipo V/deficiência , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Mucolipidoses/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Teste Pré-Natal não Invasivo/métodos , Ultrassonografia Pré-Natal/métodos , Sequenciamento do Exoma/métodos
4.
Mol Biol Cell ; 31(25): 2803-2815, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026933

RESUMO

Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.


Assuntos
Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Epitélio/ultraestrutura , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Camundongos , Microscopia Eletrônica , Microvilosidades/genética , Contração Muscular/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo II/fisiologia , Miosinas/metabolismo
5.
J Biol Chem ; 295(48): 16191-16206, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051206

RESUMO

Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.


Assuntos
Bioensaio , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microvilosidades/metabolismo , Miosinas/metabolismo , Células CACO-2 , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Células HeLa , Humanos , Microvilosidades/genética , Miosinas/genética
6.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112796

RESUMO

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Assuntos
Duodeno/metabolismo , Edição de Genes , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Duodeno/patologia , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Mutação de Sentido Incorreto , Fenótipo , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio/genética , Sus scrofa
7.
J Agric Food Chem ; 68(1): 160-167, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825618

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of intestinal mucosa and submucosa, characterized by the disruption of the intestinal epithelial barrier, increased production of inflammatory mediators, and excessive tissue injury. Intestinal epithelial cells, as well as microvascular endothelial cells, play important roles in IBD. To study the potential effects of kaempferol in IBD progress, we established a novel epithelial-endothelial cells coculture model to investigate the intestinal inflammation and barrier function. Data demonstrated an obvious increased transepithelial electrical resistance (TEER) (1222 ± 60.40 Ω cm2 vs 1371 ± 38.77 Ω cm2), decreased flux of FITC (180.8 ± 20.06 µg/mL vs 136.7 ± 14.78 µg/mL), and up-regulated occludin and claudin-2 expression in Caco-2 that was specifically cocultured with endothelial cells. Meanwhile, 80 µM kaempferol alleviated the drop of TEER, the increase of FITC flux, and the overexpression of interleukin-8 (IL-8) induced by 1 µg/mL lipopolysaccharide (LPS). Additionally, kaempferol also ameliorated the LPS-induced decrease of protein expression of zonula occludens-1 (ZO-1), occludin, and claudin-2, together with the inhibited protein expressions of the phosphorylation level of NF-κB and I-κB induced by LPS. Our results suggest that kaempferol alleviates the IL-8 secretion and barrier dysfunction of the Caco-2 monolayer in the LPS-induced epithelial-endothelial coculture model via inhibiting the NF-κB signaling pathway activation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Quempferóis/farmacologia , Lipopolissacarídeos/efeitos adversos , Células CACO-2 , Claudina-2/genética , Claudina-2/metabolismo , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Microvilosidades/efeitos dos fármacos , Microvilosidades/genética , Microvilosidades/metabolismo , Ocludina/genética , Ocludina/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
8.
Mol Biol Cell ; 30(26): 3076-3089, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31664880

RESUMO

Loss-of-function mutations in the nonconventional myosin Vb (Myo5b) result in microvillus inclusion disease (MVID) and massive secretory diarrhea that often begins at birth. Myo5b mutations disrupt the apical recycling endosome (ARE) and membrane traffic, resulting in reduced surface expression of apical membrane proteins. ARE disruption also results in constitutive phosphoinositide-dependent kinase 1 gain of function. In MVID, decreased surface expression of apical anion channels involved in Cl- extrusion, such as cystic fibrosis transmembrane conductance regulator (CFTR), should reduce fluid secretion into the intestinal lumen. But the opposite phenotype is observed. To explain this contradiction and the onset of diarrhea, we hypothesized that signaling effects downstream from Myo5b loss of function synergize with higher levels of glucocorticoids to activate PKA and CFTR. Data from intestinal cell lines, human MVID, and Myo5b KO mouse intestine revealed changes in the subcellular redistribution of PKA activity to the apical pole, increased CFTR phosphorylation, and establishment of apical cAMP gradients in Myo5b-defective cells exposed to physiological levels of glucocorticoids. These cells also displayed net secretory fluid fluxes and transepithelial currents mainly from PKA-dependent Cl- secretion. We conclude that Myo5b defects result in PKA stimulation that activates residual channels on the surface when intestinal epithelia are exposed to glucocorticoids at birth.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glucocorticoides/metabolismo , Miosina Tipo V/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Canais de Cloreto/metabolismo , Diarreia/congênito , Diarreia/genética , Humanos , Síndromes de Malabsorção/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/patologia , Mucolipidoses/genética
9.
Proc Natl Acad Sci U S A ; 116(28): 14002-14010, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221762

RESUMO

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Receptores de Antígenos de Linfócitos T/química , Animais , Humanos , Cinética , Ligantes , Ativação Linfocitária/genética , Complexo Principal de Histocompatibilidade/imunologia , Microvilosidades/genética , Microvilosidades/imunologia , Modelos Teóricos , Peptídeos/química , Peptídeos/imunologia , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Imagem Individual de Molécula , Linfócitos T/química , Linfócitos T/imunologia
10.
J Biol Chem ; 293(45): 17317-17335, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30242130

RESUMO

Polarized epithelia assemble into sheets that compartmentalize organs and generate tissue barriers by integrating apical surfaces into a single, unified structure. This tissue organization is shared across organs, species, and developmental stages. The processes that regulate development and maintenance of apical epithelial surfaces are, however, undefined. Here, using an intestinal epithelial-specific knockout (KO) mouse and cultured epithelial cells, we show that the tight junction scaffolding protein zonula occludens-1 (ZO-1) is essential for development of unified apical surfaces in vivo and in vitro We found that U5 and GuK domains of ZO-1 are necessary for proper apical surface assembly, including organization of microvilli and cortical F-actin; however, direct interactions with F-actin through the ZO-1 actin-binding region (ABR) are not required. ZO-1 lacking the PDZ1 domain, which binds claudins, rescued apical structure in ZO-1-deficient epithelia, but not in cells lacking both ZO-1 and ZO-2, suggesting that heterodimerization with ZO-2 restores PDZ1-dependent ZO-1 interactions that are vital to apical surface organization. Pharmacologic F-actin disruption, myosin II motor inhibition, or dynamin inactivation restored apical epithelial structure in vitro and in vivo, indicating that ZO-1 directs epithelial organization by regulating actomyosin contraction and membrane traffic. We conclude that multiple ZO-1-mediated interactions contribute to coordination of epithelial actomyosin function and genesis of unified apical surfaces.


Assuntos
Actomiosina/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Animais , Transporte Biológico Ativo/fisiologia , Membrana Celular/genética , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Células Epiteliais/ultraestrutura , Mucosa Intestinal/ultraestrutura , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/ultraestrutura , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Multimerização Proteica/fisiologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo
11.
Gastroenterology ; 155(6): 1883-1897.e10, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144427

RESUMO

BACKGROUND & AIMS: Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. METHODS: We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCreERT2;Myo5bflox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. RESULTS: Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCreERT2;Myo5bflox/flox mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCreERT2;Myo5bflox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCreERT2;Myo5bflox/flox mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity. CONCLUSIONS: Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Aquaporinas/metabolismo , Duodeno/metabolismo , Duodeno/patologia , Inativação Gênica , Humanos , Mucosa Intestinal , Intestinos/citologia , Intestinos/patologia , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/patologia , Transporte Proteico , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , Tamoxifeno/administração & dosagem
12.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880488

RESUMO

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Assuntos
Células Endoteliais/metabolismo , Exocitose , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Via Secretória , Transdução de Sinais , Corpos de Weibel-Palade/ultraestrutura
13.
Gastroenterology ; 155(3): 815-828, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782846

RESUMO

BACKGROUND & AIMS: Crohn disease (CD) presents as chronic and often progressive intestinal inflammation, but the contributing pathogenic mechanisms are unclear. We aimed to identify alterations in intestinal cells that could contribute to the chronic and progressive course of CD. METHODS: We took an unbiased system-wide approach by performing sequence analysis of RNA extracted from formalin-fixed paraffin-embedded ileal tissue sections from patients with CD (n = 36) and without CD (controls; n = 32). We selected relatively uninflamed samples, based on histology, before gene expression profiling; validation studies were performed using adjacent serial tissue sections. A separate set of samples (3 control and 4 CD samples) was analyzed by transmission electron microscopy. We developed methods to visualize an overlapping modular network of genes dysregulated in the CD samples. We validated our findings using biopsy samples (110 CD samples for gene expression analysis and 54 for histologic analysis) from the UNITI-2 phase 3 trial of ustekinumab for patients with CD and healthy individuals (26 samples used in gene expression analysis). RESULTS: We identified gene clusters that were altered in nearly all CD samples. One cluster encoded genes associated with the enterocyte brush border, leading us to investigate microvilli. In ileal tissues from patients with CD, the microvilli were of decreased length and had ultrastructural defects compared with tissues from controls. Microvilli length correlated with expression of genes that regulate microvilli structure and function. Network analysis linked the microvilli cluster to several other down-regulated clusters associated with altered intracellular trafficking and cellular metabolism. Enrichment of a core microvilli gene set also was lower in the UNITI-2 trial CD samples compared with controls; expression of microvilli genes was correlated with microvilli length and endoscopy score and was associated with response to treatment. CONCLUSIONS: In a transcriptome analysis of formalin-fixed and paraffin-embedded ileal tissues from patients with CD and controls, we associated transcriptional alterations with histologic alterations, such as differences in microvilli length. Decreased microvilli length and decreased expression of the microvilli gene set might contribute to epithelial malfunction and the chronic and progressive disease course in patients with CD.


Assuntos
Doença de Crohn/patologia , Íleo/patologia , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Microvilosidades/patologia , Doença Crônica , Doença de Crohn/genética , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Microvilosidades/genética , Transcriptoma
14.
Mol Cell Biol ; 38(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581186

RESUMO

PTEN is a tumor suppressor that is frequently lost in epithelial malignancies. A part of the tumor-suppressive properties of PTEN is attributed to its function in cell polarization and consequently its role in maintaining epithelial tissue integrity. However, surprisingly little is known about the function and regulation of PTEN during epithelial cell polarization. We used clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated gene disruption to delete PTEN in intestinal epithelial Ls174T:W4 cells, which upon differentiation form a microvillus-covered apical membrane (brush border) on a part of the cell cortex, independent of cell-cell junctions. We show that loss of PTEN results in the formation of a larger brush border that, in a fraction of the cells, even spans the entire plasma membrane, revealing that PTEN functions in the regulation of apical membrane size. Depletion of the phosphatase PTPL1 resulted in a similar defect. PTPL1 interacts with PTEN, and this interaction is necessary for apical membrane enrichment of PTEN. Importantly, phosphatase activity of PTPL1 is not required, indicating that PTPL1 functions as an anchor protein in this process. Our work thus demonstrates a novel function for PTEN during cell polarization in controlling apical membrane size and identifies PTPL1 as a critical apical membrane anchor for PTEN in this process.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Microvilosidades/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Epiteliais/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Microvilosidades/genética , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética
15.
Traffic ; 18(7): 453-464, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407399

RESUMO

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.


Assuntos
Enterócitos/metabolismo , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células CACO-2 , Membrana Celular/metabolismo , Enterócitos/ultraestrutura , Humanos , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/genética , Mutação , Miosina Tipo V/genética , Transporte Proteico , Proteínas Qa-SNARE/genética , Vesículas Secretórias/ultraestrutura
16.
Cytoskeleton (Hoboken) ; 73(11): 670-679, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27464680

RESUMO

Cordon-bleu (COBL) is a multifunctional WASP-Homology 2 (WH2) domain-containing protein implicated in a wide variety of cellular functions ranging from dendritic arborization in neurons to the assembly of microvilli on the surface of transporting epithelial cells. In vitro biochemical studies suggest that COBL is capable of nucleating and severing actin filaments, among other activities. How the multiple activities of COBL observed in vitro contribute to its function in cells remains unclear. Here, we used live imaging to evaluate the impact of COBL expression on the actin cytoskeleton in cultured cells. We found that COBL induces the formation of dynamic linear actin structures throughout the cytosol. We also found that stabilizing these dynamic structures with the parallel actin-bundling protein espin slows down their turnover and enables the robust formation of self-supported protrusions on the dorsal cell surface. Super-resolution imaging revealed a global remodeling of the actin cytoskeleton in cells expressing these two factors. Taken together, these results provide insight as to how COBL contributes to the assembly of actin-based structures such as epithelial microvilli. © 2016 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto de Actina/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/genética , Animais , Linhagem Celular Tumoral , Proteínas do Citoesqueleto , Camundongos , Proteínas dos Microfilamentos/genética , Microvilosidades/genética , Proteínas/genética
17.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G142-55, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229121

RESUMO

Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea.


Assuntos
Enterócitos/metabolismo , Jejuno/metabolismo , Síndromes de Malabsorção/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/ultraestrutura , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Jejuno/patologia , Jejuno/ultraestrutura , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/patologia , Proteínas de Membrana Transportadoras/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/genética , Mucolipidoses/patologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fenótipo , Fosfoproteínas/metabolismo , Interferência de RNA , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato , Fatores de Transcrição , Transfecção , Proteínas de Sinalização YAP
18.
Medicine (Baltimore) ; 95(9): e2918, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26945392

RESUMO

Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs*2; heterozygous Y1169Ter and InsA1143, Fs*3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the characteristic triad of T nodosa, hepatic cirrhosis, and intractable enteropathy have low IgG, poor vaccine response and/or decreased antigen-stimulated lymphocyte proliferation. This is now better classified into the subgroup of "well-defined syndromes with immunodeficiency" (the update termed as "combined immunodeficiencies with associated or syndromic features") than "predominantly antibody deficiencies" in the update PIDs classification, and requires optimal interventions.


Assuntos
Proteínas de Transporte/genética , Diarreia Infantil/genética , Retardo do Crescimento Fetal/genética , Doenças do Cabelo/genética , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Mutação , Povo Asiático/genética , Canadá , Diarreia Infantil/patologia , Fácies , Feminino , Retardo do Crescimento Fetal/patologia , Genótipo , Doenças do Cabelo/patologia , Humanos , Hiperlipoproteinemia Tipo II/classificação , Recém-Nascido , Síndromes de Malabsorção/patologia , Masculino , Microvilosidades/genética , Mucolipidoses/patologia , Fenótipo , Síndrome , Síndromes de Tricotiodistrofia/genética
19.
J Clin Invest ; 125(9): 3519-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26258413

RESUMO

Diarrhea is one of the troublesome complications of diabetes, and the underlying causes of this problem are complex. Here, we investigated whether altered electrolyte transport contributes to diabetic diarrhea. We found that the expression of Na+/H+ exchanger NHE3 and several scaffold proteins, including NHE3 regulatory factors (NHERFs), inositol trisphosphate (IP3) receptor-binding protein released with IP3 (IRBIT), and ezrin, was decreased in the intestinal brush border membrane (BBM) of mice with streptozotocin-induced diabetes. Treatment of diabetic mice with insulin restored intestinal NHE3 activity and fluid absorption. Molecular analysis revealed that NHE3, NHERF1, IRBIT, and ezrin form macrocomplexes, which are perturbed under diabetic conditions, and insulin administration reconstituted these macrocomplexes and restored NHE3 expression in the BBM. Silencing of NHERF1 or IRBIT prevented NHE3 trafficking to the BBM and insulin-dependent NHE3 activation. IRBIT facilitated the interaction of NHE3 with NHERF1 via protein kinase D2-dependent phosphorylation. Insulin stimulated ezrin phosphorylation, which enhanced the interaction of ezrin with NHERF1, IRBIT, and NHE3. Additionally, oral administration of lysophosphatidic acid (LPA) increased NHE3 activity and fluid absorption in diabetic mice via an insulin-independent pathway. Together, these findings indicate the importance of NHE3 in diabetic diarrhea and suggest LPA administration as a potential therapeutic strategy for management of diabetic diarrhea.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diarreia/metabolismo , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Células CACO-2 , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diarreia/genética , Diarreia/patologia , Humanos , Intestinos/patologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisofosfolipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
20.
PLoS One ; 10(7): e0127926, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207893

RESUMO

Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG) of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular shapes. Composed of rows of actin-filled stereocilia with increasing lengths, the hair cell's staircase-shaped bundle is formed from a progenitor field of smaller, thinner, and uniformly spaced microvilli with relatively invariant lengths. While recent genetic studies have provided a significant increase in information on the multitude of stereocilia protein components, there is currently no model that integrates the basic physical forces and biochemical processes necessary to explain the emergence of the SCG. We propose such a model derived from the biophysical and biochemical characteristics of actin-based protrusions. We demonstrate that polarization of the cell's apical surface, due to the lateral polarization of the entire epithelial layer, plays a key role in promoting SCG formation. Furthermore, our model explains many distinct features of the manifestations of SCG in different species and in the presence of various deafness-associated mutations.


Assuntos
Algoritmos , Modelos Biológicos , Estereocílios/fisiologia , Estereocílios/ultraestrutura , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fenômenos Biofísicos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Audição/genética , Audição/fisiologia , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mutação , Miosinas/genética , Miosinas/metabolismo , Estereocílios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA