Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Neuromuscul Disord ; 35: 29-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219297

RESUMO

Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Humanos , Feminino , Músculo Esquelético/patologia , Tropomiosina/genética , Doenças Musculares/patologia , Hipertonia Muscular/patologia , Fenótipo , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Mutação
2.
Neurol Sci ; 45(3): 1225-1231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37851294

RESUMO

BACKGROUND: Inherited nemaline myopathy is one of the most common congenital myopathies. This genetically heterogeneous disease is defined by the presence of nemaline bodies in muscle biopsy. The phenotypic spectrum is wide and cognitive involvement has been reported, although not extensively evaluated. METHODS: We report two nemaline myopathy patients presenting pronounced central nervous system involvement leading to functional compromise and novel facial and skeletal dysmorphic findings, possibly expanding the disease phenotype. RESULTS: One patient had two likely pathogenic NEB variants, c.2943G > A and c.8889 + 1G > A, and presented cognitive impairment and dysmorphic features, and the other had one pathogenic variant in ACTA1, c.169G > C (p.Gly57Arg), presenting autism spectrum disorder and corpus callosum atrophy. Both patients had severe cognitive involvement despite milder motor dysfunction. CONCLUSION: We raise the need for further studies regarding the role of thin filament proteins in the central nervous system and for a systematic cognitive assessment of congenital myopathy patients.


Assuntos
Transtorno do Espectro Autista , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculo Esquelético/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sistema Nervoso Central , Mutação
3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003336

RESUMO

A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.


Assuntos
Contratura , Miopatias da Nemalina , Humanos , Pré-Escolar , Actinas/genética , Tropomiosina/genética , Tropomiosina/química , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miopatias da Nemalina/genética , Mutação , Miosinas/genética , Contratura/patologia , Fenótipo , Troponina/genética , Músculo Esquelético/patologia
4.
Neuromuscul Disord ; 33(12): 990-995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980206

RESUMO

Congenital myopathies are defined by early clinical onset, slow progression, hereditary nature and disease-specific myopathological lesions - however, with exceptions - demanding special techniques in regard to morphological diagnostic and research work-up. To identify an index disease in a family requires a muscle biopsy - and no congenital myopathy has ever been first described at autopsy. The nosographic history commenced when - in addition to special histopathological techniques in the earliest classical triad of central core disease, 1956, nemaline myopathy, 1963, and centronuclear myopathy, 1966/67, within a decade - electron microscopy and enzyme histochemistry were applied to unfixed frozen muscle tissue and, thus, revolutionized diagnostic and research myopathology. During the following years, the list of structure-defined congenital myopathies grew to some 40 conditions. Then, the introduction of immunohistochemistry allowed myopathological documentation of proteins and their abnormalities in individual congenital myopathies. Together with the diagnostic evolution of molecular genetics, many more congenital myopathies were described, without new disease-specific lesions or only already known ones. These were nosographically defined by individual mutations in hitherto congenital myopathies-unrelated genes. This latter development may also affect the nomenclature of congenital myopathies in that the mutant gene needs to be attached to the individually identified congenital myopathies with or without the disease-specific lesion, such as CCD-RYR1 or CM-RYR1. This principle is similar to that of the nomenclature of Congenital Disorders of Glycosylation. Retroactive molecular characterization of originally and first described congenital myopathies has only rarely been achieved.


Assuntos
Miopatias da Nemalina , Miopatias Congênitas Estruturais , Miopatia da Parte Central , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Miopatias Congênitas Estruturais/patologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculos/patologia , Miopatia da Parte Central/patologia , Mutação , Músculo Esquelético/patologia
5.
Curr Neurol Neurosci Rep ; 23(11): 777-784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37856049

RESUMO

PURPOSE OF REVIEW: Sporadic late-onset nemaline myopathy (SLONM) is a rare adult-onset, acquired, muscle disease that can be associated with monoclonal gammopathy or HIV infection. The pathological hallmark of SLONM is the accumulation of nemaline rods in muscle fibers. We review here current knowledge about its presentation, pathophysiology, and management. RECENT FINDINGS: SLONM usually manifests with subacutely progressive proximal and axial weakness, but it can also present with chronic progressive weakness mimicking muscular dystrophy. The pathophysiology of the disease remains poorly understood, with evidence pointing to both autoimmune mechanisms and hematological neoplasia. Recent studies have identified histological, proteomic, and transcriptomic alterations that shed light on disease mechanisms and distinguish SLONM from inherited nemaline myopathies. A majority of SLONM patients respond to intravenous immunoglobulins, chemotherapy, or hematopoietic stem cell transplant. SLONM is a treatable myopathy, although its underlying etiology and pathomechanisms remain unclear. A high degree of suspicion should be maintained for this disease to reduce diagnostic delay and treatment in SLONM and facilitate its distinction from inherited nemaline myopathies.


Assuntos
Infecções por HIV , Gamopatia Monoclonal de Significância Indeterminada , Miopatias da Nemalina , Adulto , Humanos , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/genética , Miopatias da Nemalina/terapia , Infecções por HIV/complicações , Diagnóstico Tardio , Proteômica , Gamopatia Monoclonal de Significância Indeterminada/complicações , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/patologia , Músculo Esquelético
6.
Handb Clin Neurol ; 195: 533-561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562885

RESUMO

The congenital myopathies are inherited muscle disorders characterized clinically by hypotonia and weakness, usually from birth, with a static or slowly progressive clinical course. Historically, the congenital myopathies have been classified according to major morphological features seen on muscle biopsy as nemaline myopathy, central core disease, centronuclear or myotubular myopathy, and congenital fiber type disproportion. However, in the past two decades, the genetic basis of these different forms of congenital myopathy has been further elucidated with the result being improved correlation with histological and genetic characteristics. However, these notions have been challenged for three reasons. First, many of the congenital myopathies can be caused by mutations in more than one gene that suggests an impact of genetic heterogeneity. Second, mutations in the same gene can cause different muscle pathologies. Third, the same genetic mutation may lead to different pathological features in members of the same family or in the same individual at different ages. This chapter provides a clinical overview of the congenital myopathies and a clinically useful guide to its genetic basis recognizing the increasing reliance of exome, subexome, and genome sequencing studies as first-line analysis in many patients.


Assuntos
Miopatias da Nemalina , Miopatias Congênitas Estruturais , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas , Mutação/genética
7.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393515

RESUMO

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Sequenciamento do Exoma , Tropomiosina/genética , Tropomiosina/metabolismo , Músculo Esquelético/patologia , Análise de Sequência de RNA
8.
Am J Pathol ; 193(10): 1528-1547, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422147

RESUMO

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.


Assuntos
Miopatias da Nemalina , Animais , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidade Muscular , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica
9.
Neuromuscul Disord ; 33(4): 319-323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893608

RESUMO

Nemaline myopathy (NEM) type 10, caused by biallelic mutations in LMOD3, is a severe congenital myopathy clinically characterized by generalized hypotonia and muscle weakness, respiratory insufficiency, joint contractures, and bulbar weakness. Here, we describe a family with two adult patients presenting mild nemaline myopathy due to a novel homozygous missense variant in LMOD3. Both patients presented mild delayed motor milestones, frequent falls during infancy, prominent facial weakness and mild muscle weakness in the four limbs. Muscle biopsy showed mild myopathic changes and small nemaline bodies in a few fibers. A neuromuscular gene panel revealed a homozygous missense variant in LMOD3 that co-segregated with the disease in the family (NM_198271.4: c.1030C>T; p.Arg344Trp). The patients described here provide evidence of the phenotype-genotype correlation, suggesting that non-truncating variants in LMOD3 lead to milder phenotypes of NEM type 10.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Debilidade Muscular/genética , Debilidade Muscular/patologia , Fenótipo , Mutação
10.
Exp Cell Res ; 424(2): 113507, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796746

RESUMO

Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxidos/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Actinas/genética , Actinas/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
11.
J Hum Genet ; 68(2): 97-101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446828

RESUMO

The TNNT1 gene encoding the slow skeletal muscle TnT has been identified as a causative gene for nemaline myopathy. TNNT1 nemaline myopathy is mainly characterized by neonatal-onset muscle weakness, pectus carinatum and respiratory insufficiency. Herein, we report on a Chinese girl with TNNT1 nemaline myopathy with mild clinical phenotypes without thoracic deformities or decreased respiratory function. Muscle biopsy showed moderate to marked type 1 fiber atrophy and nemaline rods. Next-generation sequencing identified the compound heterozygous c. 587dupA (p. D196Efs*41) and c. 387+5G>A mutations in the TNNT1 gene according to the transcript NM_003283.4. RNA sequencing revealed complete exon 9 skipping caused by the c. 387+5G>A mutation. Through quantitative PCR, we found that both the truncation c. 587dupA (p. D196Efs*41) and the splicing c. 387+5G>A mutations triggered nonsense-mediated mRNA decay (NMD). Western blotting showed the residual amount of the truncated TNNT1 protein by deletion of exon 9, which may ameliorate the disease to some extent.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Músculo Esquelético/patologia , Mutação , Debilidade Muscular/genética , Éxons/genética
12.
Hum Mol Genet ; 32(7): 1127-1136, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36322148

RESUMO

Nemaline myopathy 8 (NEM8) is typically a severe autosomal recessive disorder associated with variants in the kelch-like family member 40 gene (KLHL40). Common features include fetal akinesia, fractures, contractures, dysphagia, respiratory failure and neonatal death. Here, we describe a 26-year-old man with relatively mild NEM8. He presented with hypotonia and bilateral femur fractures at birth, later developing bilateral Achilles' contractures, scoliosis, and elbow and knee contractures. He had walking difficulties throughout childhood and became wheelchair bound from age 13 after prolonged immobilization. Muscle magnetic resonance imaging at age 13 indicated prominent fat replacement in his pelvic girdle, posterior compartments of thighs and vastus intermedius. Muscle biopsy revealed nemaline bodies and intranuclear rods. RNA sequencing and western blotting of patient skeletal muscle indicated significant reduction in KLHL40 mRNA and protein, respectively. Using gene panel screening, exome sequencing and RNA sequencing, we identified compound heterozygous variants in KLHL40; a truncating 10.9 kb deletion in trans with a likely pathogenic variant (c.*152G > T) in the 3' untranslated region (UTR). Computational tools SpliceAI and Introme predicted the c.*152G > T variant created a cryptic donor splice site. RNA-seq and in vitro analyses indicated that the c.*152G > T variant induces multiple de novo splicing events that likely provoke nonsense mediated decay of KLHL40 mRNA explaining the loss of mRNA expression and protein abundance in the patient. Analysis of 3' UTR variants in ClinVar suggests variants that introduce aberrant 3' UTR splicing may be underrecognized in Mendelian disease. We encourage consideration of this mechanism during variant curation.


Assuntos
Contratura , Miopatias da Nemalina , Masculino , Recém-Nascido , Humanos , Criança , Adolescente , Adulto , Miopatias da Nemalina/genética , Regiões 3' não Traduzidas/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro , Contratura/genética , Mutação
13.
Acta Neuropathol Commun ; 10(1): 185, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528760

RESUMO

Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.


Assuntos
Miopatias da Nemalina , Animais , Camundongos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Mutação/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miosinas/metabolismo , Proteoma/metabolismo
14.
Expert Opin Ther Targets ; 26(10): 853-867, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36524401

RESUMO

INTRODUCTION: Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED: We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION: The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.


Assuntos
Miopatias da Nemalina , Humanos , Camundongos , Animais , Miopatias da Nemalina/genética , Miopatias da Nemalina/terapia , Miopatias da Nemalina/patologia , Fenótipo , Genótipo , Músculo Esquelético , Mutação
15.
Acta Neuropathol Commun ; 10(1): 101, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810298

RESUMO

Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.


Assuntos
Miopatias da Nemalina , Actinas/genética , Actinas/metabolismo , Biópsia , Criança , Feminino , Humanos , Debilidade Muscular/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Gravidez
16.
Neuromuscul Disord ; 32(8): 687-691, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688744

RESUMO

Tropomyosin 3 (TPM3) gene mutations associate with autosomal dominant and recessive nemaline myopathy 1 (NEM1), congenital fiber type disproportion myopathy (CFTD) and cap myopathy (CAPM1), and a combination of caps and nemaline bodies. We report on a 47-year-old man with polyglobulia, restricted vital capacity and mild apnea hypopnea syndrome, requiring noninvasive ventilation. Physical assessment revealed bilateral ptosis and facial paresis, with high arched palate and retrognathia; global hypotonia and diffuse axial weakness, including neck and upper and lower limb girdle and foot dorsiflexion weakness. Whole body MRI showed a diffuse fatty replacement with an unspecific pattern. A 122 gene NGS neuromuscular disorders panel revealed the heterozygous VUS c.709G>A (p.Glu237Lys) on exon 8 of TMP3. A deltoid muscle biopsy showed a novel histological pattern combining fiber type disproportion and caps. Our findings support the pathogenicity of the novel TPM3 variant and widen the phenotypic gamut of TMP3-related congenital myopathy.


Assuntos
Miopatias da Nemalina , Miopatias Congênitas Estruturais , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Tropomiosina/genética
17.
Science ; 375(6582): eabn1934, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175800

RESUMO

In skeletal muscle, nebulin stabilizes and regulates the length of thin filaments, but the underlying mechanism remains nebulous. In this work, we used cryo-electron tomography and subtomogram averaging to reveal structures of native nebulin bound to thin filaments within intact sarcomeres. This in situ reconstruction provided high-resolution details of the interaction between nebulin and actin, demonstrating the stabilizing role of nebulin. Myosin bound to the thin filaments exhibited different conformations of the neck domain, highlighting its inherent structural variability in muscle. Unexpectedly, nebulin did not interact with myosin or tropomyosin, but it did interact with a troponin T linker through two potential binding motifs on nebulin, explaining its regulatory role. Our structures support the role of nebulin as a thin filament "molecular ruler" and provide a molecular basis for studying nemaline myopathies.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miofibrilas/ultraestrutura , Actinas/química , Actinas/metabolismo , Animais , Tomografia com Microscopia Eletrônica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Proteínas Musculares/genética , Mutação , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Miofibrilas/química , Miofibrilas/metabolismo , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Miosinas/química , Miosinas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Músculos Psoas/química , Músculos Psoas/metabolismo , Músculos Psoas/ultraestrutura , Sarcômeros/química , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura
18.
Neuromuscul Disord ; 32(2): 176-184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165004

RESUMO

Nemaline myopathies are clinically and genetically heterogeneous disorders caused by several different genes. One of them is TNNT1, which was initially described in Amish families and has not been reported in Asian populations. Although most TNNT1 myopathies are caused by loss-of-function mutations, several recent studies have shown that missense mutations can also be pathogenic. A 16-year-old Korean boy with progressive muscle weakness visited the Seoul National University Hospital. He showed generalized myopathy, which was predominant in the paraspinal and neck muscles. Moreover, nemaline rods were observed in a muscle biopsy. Whole-exome sequencing of DNA samples of the patient and his younger brother, who had a similar phenotype, revealed novel compound heterozygous mutations in TNNT1 (c.724G>C (p.Ala242Pro) and c.611+1G>A). Sanger sequencing of cDNA extracted from muscle samples of the patient confirmed partial or total skipping of exon 11 in the splicing variant. The impact of the missense variant on muscle integrity and locomotor activity was verified using a zebrafish loss-of-function model. Here, we reported novel familial cases of TNNT1 myopathy with intermediate clinical presentations caused by compound heterozygous mutations and demonstrated their functional defects using an animal model.


Assuntos
Miopatias da Nemalina , Troponina T/genética , Peixe-Zebra , Adolescente , Animais , Humanos , Masculino , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/genética , Fenótipo
19.
BMC Pediatr ; 22(1): 65, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081925

RESUMO

BACKGROUND: Congenital myopathies are a group of rare neuromuscular diseases characterized by specific histopathological features. The relationship between the pathologies and the genetic causes is complex, and the prevalence of myopathy-causing genes varies among patients from different ethnic groups. The aim of the present study was to characterize congenital myopathies with infancy onset among patients registered at our institution. METHOD: This retrospective study enrolled 56 patients based on the pathological and/or genetic diagnosis. Clinical, histopathological and genetic features of the patients were analysed with long-term follow-up. RESULTS: Twenty-six out of 43 patients who received next-generation sequencing had genetic confirmation, and RYR1 variations (12/26) were the most prevalent. Eighteen novel variations were identified in 6 disease-causing genes, including RYR1, NEB, TTN, TNNT1, DNM2 and ACTA1. Nemaline myopathy (17/55) was the most common histopathology. The onset ages ranged from birth to 1 year. Thirty-one patients were followed for 3.83 ± 3.05 years (ranging from 3 months to 11 years). No patient died before 1 year. Two patients died at 5 years and 8 years respectively. The motor abilities were stable or improved in 23 patients and deteriorated in 6 patients. Ten (10/31) patients developed respiratory involvement, and 9 patients (9/31) had mildly abnormal electrocardiograms and/or echocardiograms. CONCLUSION: The severity of congenital myopathies in the neonatal/infantile period may vary in patients from different ethnic groups. More concern should be given to cardiac monitoring in patients with congenital myopathies even in those with static courses.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Criança , China/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Estudos Retrospectivos
20.
Am J Med Genet A ; 188(3): 970-977, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862840

RESUMO

Nemaline Myopathy (NM) is a disorder of skeletal muscles caused by mutations in sarcomere proteins and characterized by accumulation of microscopic rod or thread-like structures (nemaline bodies) in skeletal muscles. Patients diagnosed with both NM and infantile cardiomyopathy are very rare. A male infant presented, within the first few hours of life, with severe dilated cardiomyopathy, biventricular dysfunction and left ventricular noncompaction. A muscle biopsy on the 8th day of life from the right sternocleidomastoid muscle identified nemaline rods. Whole exome sequencing identified a c.1288 delT (homozygous pathogenic variant) in the CAP2 gene (NM_006366), yielding a CAP2 protein (NP_006357.1) with a p.C430fs. Both parents were heterozygous for the same variant but have no history of heart or muscle disease. Analysis of patient derived fibroblasts and cardiomyocytes derived from induced pluripotent stem cells confirmed the p.C430fs mutation (pathogenic variant), which appears to cause loss of both CAP2 protein and mRNA. The CAP2 gene encodes cyclase associated protein 2, an actin monomer binding and filament depolymerizing protein and CAP2 knockout mice develop severe dilated cardiomyopathy and muscle weakness. The patient underwent a heart transplant at 1 year of age. Heart tissue explanted at that time also showed nemaline rods and additionally disintegration of the myofibrillar structure. Other extra cardiac concerns include mild hypotonia, atrophic and widened scarring. This is the first description of a patient presenting with nemaline myopathy associated with a pathogenic variant of CAP2.


Assuntos
Cardiomiopatia Dilatada , Miopatias da Nemalina , Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Homozigoto , Humanos , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA