RESUMO
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Assuntos
Glaucoma , Miopia , Fator de Crescimento Transformador beta2 , Animais , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patologia , Camundongos , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Miopia/genética , Miopia/metabolismo , Humanos , Iris/metabolismo , Iris/patologia , Iris/anormalidades , Pressão IntraocularRESUMO
OBJECTIVE: This study aimed to explore the potential causal relationship between intraocular pressure (IOP) and myopia. METHODS: The study included 3,459 patients who underwent corneal refractive surgery at our institution between 2021 and 2023. Preoperative data on IOP, spherical equivalent (SE), axial length (AL), and corneal thickness (CCT) were collected. The association between IOP and myopia was investigated through rank correlation analysis, and causal inference was examined using Mendelian randomization (MR) methods, including MR-Egger, weighted median, mode-based estimation, simple mode, and inverse variance weighted (IVW) approaches. Utilizing summary statistics from genome-wide association studies (GWAS), IOP was considered as the exposure, with myopia as the outcome variable. IVW method was employed for the primary analysis, supplemented by sensitivity analyses. RESULTS: Cross-sectional analysis revealed a non-significant association between corrected IOP (cIOP) and myopia (r = -0.019, P = 0.12). MR analysis indicated a non-significant genetic causal relationship between cIOP and myopia under the IVW method (OR = 1.001; 95 % CI [0.999-1.003], P = 0.22), a finding corroborated in replication samples (OR = 0.98; 95 % CI [0.96-1.00], P = 0.099). CONCLUSION: This study did not find a direct causal link between IOP and the development of myopia. These findings challenge the traditional role attributed to IOP in the progression of myopia and highlight the complex, multifactorial process of myopia development. This provides a new perspective on understanding the intricate mechanisms behind myopia progression.
Assuntos
Pressão Intraocular , Análise da Randomização Mendeliana , Miopia , Humanos , Miopia/genética , Miopia/fisiopatologia , Estudos Transversais , Pressão Intraocular/fisiologia , Masculino , Feminino , Adulto , Estudo de Associação Genômica Ampla , Pessoa de Meia-IdadeRESUMO
PURPOSE: To report a case of macular hole and detachment occurring after the subretinal injection of Voretigene Neparvovec (VN) in a patient affected by atypical RPE65 retinal dystrophy with high myopia and its successful surgical management. CASE DESCRIPTION: We report a case of a 70-year-old man treated with VN in both eyes. The best corrected visual acuity (BCVA) was 0.7 LogMar in the right eye (RE) and 0.92 LogMar in the left eye (LE). Axial length was 29.60 mm in the RE and 30.28 mm in the LE. Both eyes were pseudophakic. In both eyes, fundus examination revealed high myopia, posterior staphyloma, and extended retinal atrophy areas at the posterior pole, circumscribing a central island of surviving retina. Both eyes were treated with VN subretinal injection, but a full-thickness macular hole and retinal detachment occurred in the LE three weeks after surgery. The patient underwent 23-gauge vitrectomy with internal limiting membrane (ILM) peeling and the inverted flap technique with sulfur hexafluoride (SF6) 20% tamponade. Postoperative follow-up showed that the macular hole was closed and the BCVA was maintained. CONCLUSIONS: Our experience suggests that patients with atypical RPE65 retinal dystrophy and high myopia undergoing VN subretinal injection require careful management to minimize the risk of macular hole and detachment occurrence and promptly detect and address these potential complications.
Assuntos
Terapia Genética , Descolamento Retiniano , Distrofias Retinianas , Perfurações Retinianas , cis-trans-Isomerases , Humanos , Masculino , Perfurações Retinianas/etiologia , Perfurações Retinianas/genética , Perfurações Retinianas/cirurgia , Idoso , Descolamento Retiniano/genética , Descolamento Retiniano/etiologia , Descolamento Retiniano/cirurgia , cis-trans-Isomerases/genética , Distrofias Retinianas/genética , Vitrectomia , Acuidade Visual , Miopia/genéticaRESUMO
Coffin-Siris syndrome (CSS) is a rare autosomal dominant inheritance disorder characterized by distinctive facial features, hypoplasia of the distal phalanx or nail of the fifth and additional digits, developmental or cognitive delay of varying degree, hypotonia, hirsutism/hypertrichosis, sparse scalp hair and varying kind of congenital anomalies. CSS can easily be misdiagnosed as other syndromes or disorders with a similar clinical picture because of their genetic and phenotypic heterogeneity. We describde the genotype-phenotype correlation of one patient from a healthy Chinese family with a novel genotype underlying CSS, who was first diagnosed in the ophthalmology department as early-onset high myopia (eoHM). Comprehensive ophthalmic tests as well as other systemic examinations were performed on participants to confirm the phenotype. The genotype was identified using whole exome sequencing, and further verified the results among other family members by Sanger sequencing. Real-time quantitative PCR (RT-qPCR) technology was used to detect the relative mRNA expression levels of candidate genes between proband and normal family members. The pathogenicity of the identified variant was determined by The American College of Medical Genetics and Genomics (ACMG) guidelines. STRING protein-protein interactions (PPIs) network analysis was used to detect the interaction of candidate gene-related proteins with high myopia gene-related proteins. The patient had excessive eoHM, cone-rod dystrophy, coarse face, excessive hair growth on the face, sparse scalp hair, developmental delay, intellectual disability, moderate hearing loss, dental hypoplasia, patent foramen ovale, chronic non-atrophic gastritis, bilateral renal cysts, cisterna magna, and emotional outbursts with aggression. The genetic assessment revealed that the patient carries a de novo heterozygous frameshift insertion variant in the ARID1B c.3981dup (p.Glu1328ArgfsTer5), which are strongly associated with the typical clinical features of CSS patients. The test results of RT-qPCR showed that mRNA expression of the ARID1B gene in the proband was approximately 30% lower than that of the normal control in the family, suggesting that the variant had an impact on the gene function at the level of mRNA expression. The variant was pathogenic as assessed by ACMG guidelines. Analysis of protein interactions in the STRING online database revealed that the ARID1A protein interacts with the high myopia gene-related proteins FGFR3, ASXL1, ERBB3, and SOX4, whereas the ARID1A protein antagonizes the ARID1B protein. Therefore, in this paper, we are the first to report a de novo heterozygous frameshift insertion variant in the ARID1B gene causing CSS with excessive eoHM. Our study extends the genotypic and phenotypic spectrums for ARID1B-CSS and supplies evidence of significant association of eoHM with variant in ARID1B gene. As CSS has high genetic and phenotypic heterogeneity, our findings highlight the importance of molecular genetic testing and an interdisciplinary clinical diagnostic workup to avoid misdiagnosis as some disorders with similar manifestations of CSS.
Assuntos
Proteínas de Ligação a DNA , Face , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Miopia , Pescoço , Linhagem , Fatores de Transcrição , Humanos , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Face/anormalidades , Masculino , Micrognatismo/genética , Feminino , Deformidades Congênitas da Mão/genética , Miopia/genética , Proteínas de Ligação a DNA/genética , Pescoço/anormalidades , Pescoço/patologia , Anormalidades Múltiplas/genética , Adulto , Estudos de Associação Genética , China , Fenótipo , Sequenciamento do Exoma , Mutação , População do Leste AsiáticoRESUMO
BACKGROUND: Myopia is one of the eye diseases that can damage the vision of young people. This study aimed to explore the protective role of miR-92b-3p against DNA damage and apoptosis in retinal tissues of negative lens-induced myopic (LIM) guinea pigs by targeting BTG2. METHODS: Biometric measurements of ocular parameters, flash electroretinogram (FERG), and retinal thickness (RT) were performed after miR-92b-3p intravitreal injection in LIM guinea pigs. The apoptotic rate was detected by Annexin V-FITC/PI double staining, and the change in mitochondrial membrane potential was measured by JC-1 staining. Retinal apoptosis and expression of p53, BTG2, and CDK2 were explored by TdT-mediated dUTP-biotin nick labeling (TUNEL) and immunofluorescence staining assays, respectively. BTG2 and its upstream and downstream molecules at gene and protein levels in retinal tissues were measured by real-time quantitative PCR (qPCR) and Western blotting. RESULTS: Compared with normal controls (NC), the ocular axial length of LIM guinea pig significantly increased, whereas refraction decreased. Meanwhile, dMax-a and -b wave amplitudes of ERG declined, retinal thickness was decreased, the number of apoptotic cells and apoptotic rate in LIM eyes was exaggerated, and the mitochondrial membrane potential significantly decreased. In addition, results of qPCR and Western blot assays showed that the expression levels of p53, BTG2, CDK2, and BAX in LIM guinea pigs were higher than the levels of the NC group, whereas the BCL-2 expression level was decreased. By contrast, the miR-92b-3p intravitreal injection in LIM guinea pigs could significantly inhibit axial elongation, alleviate DNA damage and apoptosis, and thus protect guinea pigs against myopia. CONCLUSION: In conclusion, p53 and BTG2 were activated in the retinal tissue of myopic guinea pigs, and the activated BTG2 could elevate the expression of CDK2 and BAX, and attenuate the expression of BCL-2, which in turn promote apoptosis and eventually lead to retinal thinning and impaired visual function in myopic guinea pigs. The miR-92b-3p intravitreal injection can attenuate the elongation of ocular length and retinal thickness, and inhibit the CDK2, BAX, and p53 expression by targeting BTG2, thereby ameliorating DNA damage and apoptosis in LIM guinea pigs and protecting ocular tissues.
Assuntos
Apoptose , Dano ao DNA , MicroRNAs , Miopia , Retina , Animais , Cobaias , Modelos Animais de Doenças , Eletrorretinografia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Potencial da Membrana Mitocondrial , MicroRNAs/genética , MicroRNAs/metabolismo , Miopia/metabolismo , Miopia/genética , Miopia/patologia , Retina/patologia , Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
BACKGROUND: Among sex chromosome aneuploidies, 48, XXYY syndrome is a rare variant. This condition is marked by the existence of an additional X and Y chromosome in males, leading to a diverse range of physical, neurocognitive, behavioral, and psychological manifestations. Typical characteristics include a tall stature and infertility. Other phenotypes include congenital heart defects, skeletal anomalies, tremors, obesity, as well as the potential for type 2 diabetes and/or peripheral vascular disease. CASE PRESENTATION: A 6-year-old boy, who had been experiencing progressive vision deterioration in both eyes for the past two years, presented with a history of poor vision, delayed motor skills. The patient was diagnosed with micropenis in the pediatric outpatient clinic. Sparse hair, an unusually tall stature and craniofacial dysmorphology characterized by ocular hypertelorism, depressed nasal bridge, and epicanthic folds were observed. Comprehensive ophthalmic examination revealed high myopia and grade 3 macular hypoplasia. Diagnostic investigations including karyotype analysis and whole-exome sequencing identified an anomalous male karyotype comprising two X and two Y chromosomes, confirming a diagnosis of 48, XXYY syndrome. CONCLUSIONS: This study underscores the rare association of high myopia and grade 3 macular dysplasia with 48, XXYY syndrome. To our knowledge, this case marks the first recorded instance of macular dysplasia in a patient with 48, XXYY syndrome. This novel finding enhances our understanding of this syndrome's phenotypic variability.
Assuntos
Macula Lutea , Humanos , Masculino , Criança , Macula Lutea/patologia , Macula Lutea/anormalidades , Miopia Degenerativa/diagnóstico , Miopia Degenerativa/genética , Miopia Degenerativa/complicações , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/complicações , Miopia/genética , Miopia/diagnóstico , Miopia/complicaçõesRESUMO
OBJECTIVE: This study aimed to investigate the potential involvement of vasoactive intestinal polypeptide (VIP) in myopia development and its contribution to the mechanism of action of the anti-myopia drug, atropine. METHODS: Thirty-three-week-old guinea pigs were randomly divided into normal control (NC, n = 10), monocularly form-deprived (FDM, n = 10), and FDM treated with 1% atropine (FDM + AT, n = 10) groups. The diopter and axial length were measured at 0, 2, and 4 weeks. Guinea pig eyeballs were removed at week four, fixed, and stained for morphological changes. Immunohistochemistry (IHC) and in situ hybridization (ISH) were performed to evaluate VIP protein and mRNA levels. RESULTS: The FDM group showed an apparent myopic shift compared to the control group. The results of the H&E staining were as follows: the cells of the inner/outer nuclear layers and retinal ganglion cells were disorganized; the choroidal thickness (ChT), blood vessel lumen, and area were decreased; the sclera was thinner, with disordered fibers and increased interfibrillar space. IHC and ISH revealed that VIP's mRNA and protein expressions were significantly up-regulated in the retina of the FDM group. Atropine treatment attenuated FDM-induced myopic shift and fundus changes, considerably reducing VIP's mRNA and protein expressions. CONCLUSIONS: The findings of elevated VIP mRNA and protein levels observed in the FDM group indicate the potential involvement of VIP in the pathogenesis and progression of myopia. The ability of atropine to reduce this phenomenon suggests that this may be one of the molecular mechanisms for atropine to control myopia.
Assuntos
Miopia , Peptídeo Intestinal Vasoativo , Animais , Cobaias , Atropina/farmacologia , Miopia/genética , Retina/metabolismo , RNA Mensageiro/genética , Modelos Animais de DoençasRESUMO
The influence of environmental factors like smoking and alcohol on myopia and astigmatism is controversial. However, due to ethical concerns, alternative study designs are urgently needed to assess causal inference, as mandatory exposure to cigarettes and alcohol is unethical. Following comprehensive screenings, 326 single nucleotide polymorphisms (SNPs) related to myopia and astigmatism were included in the dataset. To validate the causal association between exposures such as cigarette smoking, alcohol consumption, and coffee intake, and outcomes namely astigmatism and myopia, five regression models were employed. These models encompassed MR-Egger regression, random-effects inverse-variance weighted (IVW), weighted median estimator (WME), weighted model, and simple model. The instrumental variables utilized in these analyses were the aforementioned SNPs. Apply Cochran's Q test to determine heterogeneity of SNPs; if heterogeneity exists, focus on IVW model results. The IVW model showed a 1.379-fold increase in the risk of astigmatism (OR = 1.379, 95%CI 0.822~2.313, P = 0.224) and a 0.963-fold increase in the risk of myopia (OR = 0.963, 95%CI 0.666~1.393, P = 0.841) for each unit increase in smoking. For each unit increase in coffee intake, the risk of astigmatism increased 1.610-fold (OR = 1.610, 95%CI 0.444~5.835, P = 0.469) and the risk of myopia increased 0.788-fold (OR = 0.788, 95%CI 0.340~1.824, P = 0.578). For each additional unit of alcohol consumption, the risk of astigmatism increased by 0.763-fold (OR = 0.763, 95%CI 0.380~1.530, P = 0.446), and none of the differences were statistically significant. However, for each unit of alcohol consumption, the risk of myopia increased by 1.597 times, and the difference was statistically significant (OR = 1.597, 95%CI 1.023~2.493, P = 0.039). The findings indicate that alcohol consumption is a risk factor for myopia but smoking and coffee intake do not affect its development. Additionally, there is no association between smoking, alcohol consumption, coffee intake, and the risk of astigmatism.
Assuntos
Astigmatismo , Fumar Cigarros , Miopia , Humanos , Astigmatismo/etiologia , Astigmatismo/genética , Café/efeitos adversos , Análise da Randomização Mendeliana , Consumo de Bebidas Alcoólicas/efeitos adversos , Miopia/etiologia , Miopia/genética , EtanolRESUMO
BACKGROUND: Myopia, commonly known as near-sightedness, has emerged as a global epidemic, impacting almost one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened the risk of developing high myopia and related sight-threatening eye conditions in adulthood. This surge in myopia rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established and potential environmental and lifestyle contributors that affect the development and progression of myopia. MAIN BODY: Epidemiological and interventional research has consistently revealed a compelling connection between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in relative peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio-economic status, and education have debatable independent influences on myopia development. CONCLUSION: The environment exerts a significant influence on the development and progression of myopia. Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors often obscure research findings, making it challenging to disentangle their individual effects. This complexity underscores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how various environmental factors can be modified to prevent or slow the progression of myopia.
Assuntos
Miopia , Pré-Escolar , Criança , Humanos , Estudos Prospectivos , Miopia/epidemiologia , Miopia/genética , Miopia/prevenção & controle , Refração Ocular , Acomodação Ocular , Ritmo CircadianoRESUMO
PURPOSE: To examine the genetic and clinical features and the natural history of RBP3-associated retinopathy. DESIGN: Multi-center international, retrospective, case series of adults and children, with moleculraly confirmed RBP3-asociated retinopathy. METHODS: The genetic, clinical, and retinal imaging findings, including optical coherence tomography (OCT) and fundus autofluorescence (FAF), were investigated both cross-sectionally and longitudinally. The results of international standard full-field electroretinography (ERG) and pattern electroretinography (PERG) were reviewed. RESULTS: We ascertained 12 patients (5 female and 7 male) from 10 families (4 patients previously reported). Ten novel disease-causing RBP3 variants were identified. Ten patients were homozygous. The mean age (±SD, range) of the group was 21.4 years (±19.1, 2.9-60.5 years) at baseline evaluation. All 12 patients were highly myopic, with a mean spherical equivalent of -16.0D (range, -7.0D to -33.0D). Visual acuity was not significantly different between eyes, and no significant anisometropia was observed. Mean best-corrected visual acuity (BCVA) was 0.48 logMAR (SD, ±0.29; range, 0.2-1.35 logMAR); at baseline. Eleven patients had longitudinal BCVA assessment, with a mean BCVA of 0.46 logMAR after a mean follow-up of 12.6 years. All patients were symptomatic with reduced VA and myopia by the age of 7 years old. All patients had myopic fundi and features in keeping with high myopia on OCT, including choroidal thinning. The 4 youngest patients had no fundus pigmentary changes, with the rest of the patients presenting with a variable degree of mid-peripheral pigmentation and macular changes. FAF showed variable phenotypes, ranging from areas of increased signal to advanced atrophy in older patients. OCT showed cystoid macular edema at presentation in 3 patients, which persisted during follow-up in 2 patients and resolved to atrophy in the third patient. The ERGs were abnormal in 9 of 9 cases, revealing variable relative involvement of rod and cone photoreceptors with additional milder dysfunction post-phototransduction in some. All but 1 patient had PERG evidence of macular dysfunction, which was severe in most cases. CONCLUSIONS: This study details the clinical and functional phenotype of RBP3-retinopathy in the largest cohort reported to date. RBP3-retinopathy is a disease characterized by early onset, slow progression over decades, and high myopia. The phenotypic spectrum and natural history as described herein has prognostic and counseling implications. RBP3-related disease should be considered in children with high myopia and retinal dystrophy.
Assuntos
Miopia , Distrofias Retinianas , Proteínas de Ligação ao Retinol , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Atrofia , Eletrorretinografia , Miopia/diagnóstico , Miopia/genética , Retina , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Proteínas de Ligação ao Retinol/genéticaRESUMO
Ophthalmological conditions are underreported in patients with KBG syndrome, which is classically described as presenting with dental, developmental, intellectual, skeletal, and craniofacial abnormalities. This study analyzed the prevalence of four ophthalmological conditions (strabismus, astigmatism, myopia, hyperopia) in 43 patients with KBG syndrome carrying variants in ANKRD11 or deletions in 16q24.3 and compared it to the literature. Forty-three patients were recruited via self-referral or a private Facebook group hosted by the KBG Foundation, with 40 of them having pathogenic or likely pathogenic variants. Virtual interviews were conducted to collect a comprehensive medical history verified by medical records. From these records, data analysis was performed to calculate the prevalence of ophthalmological conditions. Out of the 40 participants with pathogenic or likely pathogenic variants, strabismus was reported in 9 (22.5%) participants, while astigmatism, myopia, and hyperopia were reported in 11 (27.5%), 6 (15.0%), and 8 (20.0%) participants, respectively. Other reported conditions include anisometropia, amblyopia, and nystagmus. When compared to the literature, the prevalence of strabismus and refractive errors is higher than other studies. However, more research is needed to determine if variants in ANKRD11 play a role in abnormal development of the visual system. In patients with established KBG syndrome, screening for misalignment or refractive errors should be done, as interventions in patients with these conditions can improve functioning and quality of life.
Assuntos
Anormalidades Múltiplas , Astigmatismo , Doenças do Desenvolvimento Ósseo , Hiperopia , Deficiência Intelectual , Miopia , Erros de Refração , Estrabismo , Anormalidades Dentárias , Humanos , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/diagnóstico , Anormalidades Dentárias/epidemiologia , Anormalidades Dentárias/genética , Anormalidades Dentárias/diagnóstico , Fácies , Hiperopia/epidemiologia , Hiperopia/genética , Qualidade de Vida , Erros de Refração/epidemiologia , Erros de Refração/genética , Erros de Refração/diagnóstico , Fatores de Transcrição , Miopia/diagnóstico , Miopia/epidemiologia , Miopia/genéticaRESUMO
PURPOSE: This study aims to investigate the potential bidirectional causal relationship between myopia and vitreous disorders from a genetic perspective, as vitreous disorders have been found to be closely associated with myopia development. METHODS: To achieve this, a two-sample Mendelian randomization (MR) design was employed. The study utilized pooled statistics from independent genome-wide association studies. Myopia was chosen as the exposure factor, while five different vitreous disorders were considered as outcomes. The primary analytical method was the inverse variance weighting (IVW) method, supplemented by sensitivity analysis. RESULTS: The study yielded significant findings indicating a positive association between myopia and vitreous disorders. The genetic prediction of myopia consistently demonstrated a positive correlation with vitreous disorders, as evidenced by IVW (odds ratio [OR] = 18.387; P < 0.01), MR Egger (OR = 2784.954; P < 0.01), weighted median (OR = 30.284; P < 0.01), and weighted mode (OR = 57.381; P < 0.01). All sensitivity analyses further validated these associations. Furthermore, a significant association was observed between myopia and other unspecified vitreous body disorders (IVW: OR = 57.729; P < 0.01). CONCLUSION: Studies mainly conducted in European populations have confirmed that myopia, extending beyond early high myopia, plays a crucial role in influencing vitreous disorders and that there is a unidirectional causal relationship between myopia and vitreous disorders. Additionally, a causal relationship was identified between myopia and other unspecified vitreous disordes. These findings introduce fresh perspectives for the clinical management of unspecified vitreous disorders and contribute to the understanding of the effect of myopia on vitreous disorders. Myopia prevention and treatment will aid in slowing down the process of vitreous liquefaction and subsequently decrease the incidence of malignant eye conditions.
Assuntos
Estudo de Associação Genômica Ampla , Miopia , Humanos , Análise da Randomização Mendeliana , Miopia/genética , Razão de Chances , SíndromeRESUMO
To identify the active constituents, core targets, immunomodulatory functions and potential mechanisms of Dizhi pill (DZP) in the treatment of myopia. The active constituents and drug targets of DZP were searched in the TCMSP, Herb databases and correlational studies. The targets of myopia were searched in the TTD, Genecards, OMIM and Drugbank databases. Gene expression profile data of GSE136701 were downloaded from the GEO database and subjected to WGCNA and DEG analysis to screen for significant modules and targets of myopia. Intersectional targets of myopia and DZP and core targets of myopia were analyzed through the String database. The GO and KEGG enrichment analyses of the interested targets were conducted. Cibersort algorithm was used for immune infiltration analysis to investigate the immunomodulatory functions of DZP on myopia. Autodock was used to dock the important targets and active constituents. Eight targets (STAT3, PIK3CA, PIK3R1, MAPK1, MAPK3, HSP90AA1, MIP, and LGSN) and 5 active constituents (Quercetin, Beta-sitosterol, Diincarvilone A, Ferulic acid methyl ester, and Naringenin) were identified from DZP. In pathways identified by the GO and KEGG enrichment analyses, "ATP metabolic process" and "AGE-RAGE diabetes complication signaling" pathways were closely related to the mechanisms of DZP in the treatment of myopia. Molecular docking showed that both the intersectional targets and core targets of myopia could bind stably and spontaneously with the active constituents of DZP. This study suggested that the mechanisms of DZP in the treatment of myopia were related to active constituents: Quercetin, Beta-sitosterol, Diincarvilone A, Ferulic acid methyl ester and Naringenin, intersectional targets: STAT3, PIK3CA, PIK3R1, MAPK1, MAPK3, and HSP90AA1, core targets of myopia: MIP and LGSN, AGE-RAGE signaling pathway, positive regulation of ATP metabolic process pathway and immunomodulatory functions.
Assuntos
Medicamentos de Ervas Chinesas , Miopia , Humanos , Trifosfato de Adenosina/metabolismo , Biologia Computacional , Simulação de Acoplamento Molecular , Miopia/tratamento farmacológico , Miopia/genética , Miopia/imunologia , Quercetina , Fatores de Transcrição , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêuticoRESUMO
Purpose: To investigate the association of genetically determined primary open-angle glaucoma (POAG), myopic refractive error (RE), type 2 diabetes (T2D), blood pressure (BP), body mass index (BMI), cigarette smoking, and alcohol consumption with the risk of age-related cataract. Methods: To assess potential causal effects of clinical or behavioral factors on cataract risk, we conducted two-sample Mendelian randomization analyses. Genetic instruments, based on common genetic variants associated with risk factors at genome-wide significance (P < 5 × 10-8), were derived from published genome-wide association studies (GWAS). For age-related cataract, we used GWAS summary statistics from our previous GWAS conducted in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (28,092 cataract cases and 50,487 controls; all non-Hispanic whites) or in the UK Biobank (31,852 cataract cases and 428,084 controls; all European-descent individuals). We used the inverse-variance weighted (IVW) method as our primary source of Mendelian randomization estimates and conducted common sensitivity analyses. Results: We found that genetically determined POAG and mean spherical equivalent RE were significantly associated with cataract risk (IVW model: odds ratio [OR] = 1.04; 95% confidence interval [CI], 1.01-1.08; P = 0.018; per diopter more hyperopic: OR = 0.92; 95% CI, 0.89-0.93; P = 6.51 × 10-13, respectively). In contrast, genetically determined T2D, BP, BMI, cigarette smoking, or alcohol consumption were not associated with cataract risk (P > 0.05). Conclusions: Our results provide evidence that genetic risks for POAG and myopia may be causal risk factors for age-related cataract. These results are consistent with previous observational studies reporting associations of myopia with cataract risk. This information may support population cataract risk stratification and screening strategies.
Assuntos
Catarata , Diabetes Mellitus Tipo 2 , Glaucoma de Ângulo Aberto , Miopia , Adulto , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Fatores de Risco , Miopia/epidemiologia , Miopia/genética , Catarata/epidemiologia , Catarata/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Knudson's "two hit" hypothesis, mostly associated with cancer, relates to a primary heterozygous germline mutation complemented by a somatic mutation in the second allele. When the somatic "second hit" is a deletion mutation, the heterozygosity due to the first hit is lost ("loss of heterozygosity"). As the rate of germline mutations is almost two orders of magnitude lower than that of somatic mutations, de-novo germline mutations causing autosomal recessive diseases in carriers of inherited heterozygous mutations are not common. We delineate a case of high myopia presenting at infancy with mild diminution of retinal responses. Exome sequencing identified a paternally inherited apparently homozygous missense mutation in RBP3. Chromosomal microarrays delineated a de-novo germline heterozygous deletion encompassing RBP3, verified through revision of WES data. Thus, we demonstrate an inherited RBP3 missense mutation complemented by a de-novo germline RBP3 deletion, causing loss of heterozygosity of the inherited mutation. We describe a novel RBP3 missense mutation, report the first isolated RBP3 deletion, and demonstrate infantile high myopia as an initial presentation of RBP3 disease. Notably, we highlight de-novo germline deletion mutations causing "loss of heterozygosity" of inherited heterozygous mutations, culminating in autosomal recessive diseases, and discuss the scarce literature.
Assuntos
Mutação em Linhagem Germinativa , Miopia , Humanos , Heterozigoto , Mutação , Miopia/genética , Deleção de SequênciaRESUMO
This protocol describes the isolation of cells of the retinal pigment epithelium (RPE) from the eyes of young pigmented guinea pigs for potential application in molecular biology studies, including gene expression analyses. In the context of eye growth regulation and myopia, the RPE likely plays a role as a cellular relay for growth modulatory signals, as it is located between the retina and the two walls of the eye, such as the choroid and sclera. While protocols for isolating the RPE have been developed for both chicks and mice, these protocols have proven not to be directly translatable to the guinea pig, which has become an important and widely used mammalian myopia model. In this study, molecular biology tools were used to examine the expression of specific genes to confirm that the samples were free of contamination from the adjacent tissues. The value of this protocol has already been demonstrated in an RNA-Seq study of RPE from young pigmented guinea pigs exposed to myopia-inducing optical defocus. Beyond eye growth regulation, this protocol has other potential applications in studies of retinal diseases, including myopic maculopathy, one of the leading causes of blindness in myopes, in which the RPE has been implicated. The main advantage of this technique is that it is relatively simple and once perfected, yields high-quality RPE samples suitable for molecular biology studies, including RNA analysis.
Assuntos
Miopia , Retina , Animais , Cobaias , Células Epiteliais/metabolismo , Mamíferos , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismoRESUMO
Congenital stationary night blindness (CSNB) is a group of inherited retinal diseases in which either rod-to-ON-bipolar cell (ON-BC) signaling, or rod function is affected leading to impaired vision under low light conditions. One type of CSNB is associated with defects in genes (NYX, GRM6, TRPM1, GPR179, and LRIT3) involved in the mGluR6 signaling cascade at the ON-BC dendritic tips. We have previously characterized a canine model of LRIT3-CSNB and demonstrated short-term safety and efficacy of an ON-BC targeting AAV-LRIT3 (AAVK9#4-shGRM6-cLRIT3-WPRE) gene therapy. Herein, we demonstrate long-term functional recovery and molecular restoration following subretinal injection of the ON-BC targeting AAV-LRIT3 vector in all eight treated eyes for up to 32 months. Following subretinal administration of the therapeutic vector, expression of the LRIT3 transgene, as well as restoration of mGluR6 signaling cascade member TRPM1, were confirmed in the outer plexiform layer (OPL) of the treated area. However, further investigation of the transgene LRIT3 transcript expression by RNA in situ hybridization (RNA-ISH) revealed off-target expression in non-BCs including the photoreceptors, inner nuclear, and ganglion cell layers, despite the use of a mutant AAVK9#4 capsid and an improved mGluR6 promoter designed to specifically transduce and promote expression in ON-BCs. While the long-term therapeutic potential of AAVK9#4-shGRM6-cLRIT3-WPRE is promising, we highlight the necessity for further optimization of AAV-LRIT3 therapy in the canine CSNB model prior to its clinical application.
Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Animais , Cães , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Cegueira Noturna/genética , Cegueira Noturna/terapia , Cegueira Noturna/metabolismo , Retina , Miopia/genética , Miopia/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , EletrorretinografiaRESUMO
Myopia is one of the most common eye diseases in children and adolescents worldwide. Currently, there is no effective treatment in clinical practice. Ocular tissue fibrosis is involved in the development of myopia and this study aimed to investigate the effect of miR-138-5p on choroidal fibrosis in myopic guinea pigs via regulating the HIF-1α signaling pathway. First, guinea pigs were randomly divided into a normal control (NC) group, a lens-induced myopia (LIM) group, a LIM + miR-138-5p-carried Lentivirus treatment (LV) group, and a LIM + miR-138-5p-Vector treatment (VECTOR) group. All animals were induced experimental myopia with a -6.0 diopter lens except those in the NC group. Meanwhile, animals in the LV group were supplemented with 5 µl of miR-138-5p-carried Lentivirus, while those in the VECTOR group were only supplemented with the same volume of miR-138-5p-Vector. After myopia induction for 2 and 4 weeks, the refractive status and other ocular parameters of the guinea pigs were measured. Further, the expression of hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-ß, collagen I, hydroxyproline (HYP), interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and a-smooth muscle actin (α-SMA) in choroidal tissues was investigated. Results showed that the refraction and axial length of the experimental myopic guinea pigs increased, and choroid fibrosis aggravated after experimental myopic induction. miR-138-5p can efficiently decrease the refraction and ocular length, and ameliorate the choroidal fibrosis of the experimental myopic guinea pigs via downregulating the fibrosis-related TGF-ß1, collagen I, HYP, IL-1ß, TNF-α, and α-SMA expression through inhibiting the HIF-1α signaling pathway. Our results provide new insight into controlling myopic development using microRNAs in clinical practice.
Assuntos
MicroRNAs , Miopia , Animais , Cobaias , Corioide/metabolismo , Corioide/patologia , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Miopia/genética , Miopia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
Purpose: To determine the role of calcipotriol, a vitamin D3 analogue, in myopia development and altering the expression of scleral α1 chain of type I collagen (Col1α1) in mice. We also aimed to identify if the signaling pathway mediating the above changes is different from the one involved in transforming growth factor ß2 (TGF-ß2)-mediated increases of COL1A1 in cultured human scleral fibroblasts (HSFs). Methods: C57BL/6J mice were either intraperitoneally injected with calcipotriol and subjected to form deprivation (FD) or exposed to normal refractive development for 4 weeks. Scleral vitamin D receptor (Vdr) expression was knocked down using a Sub-Tenon's capsule injection of an adeno-associated virus-packaged short hairpin RNA (AAV8-shRNA). Refraction and biometric measurements evaluated myopia development. A combination of knockdown and induction strategies determined the relative contributions of the vitamin D3 and the TGF-ß2 signaling pathways in modulating COL1A1 expression in HSFs. Results: Calcipotriol injections suppressed FD-induced myopia (FDM), but it had no significant effect on normal refractive development. AAV8-shRNA injection reduced Vdr mRNA expression by 42% and shifted the refraction toward myopia (-3.15 ± 0.99D, means ± SEM) in normal eyes. In HSFs, VDR knockdown reduced calcipotriol-induced rises in COL1A1 expression, but it did not alter TGF-ß2-induced increases in COL1A1 expression. Additionally, TGF-ß2 augmented calcipotriol-induced rises in COL1A1 expression. TGF-ß receptor (TGFBRI/II) knockdown blunted TGF-ß2-induced increases in COL1A1 expression, whereas calcipotriol-induced increases in VDR and COL1A1 expression levels were unaltered. Conclusions: Scleral vitamin D3 inhibits myopia development in mice, potentially by activating a VDR-dependent signaling pathway and increasing scleral COL1A1 expression levels.
Assuntos
Miopia , Fator de Crescimento Transformador beta2 , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Camundongos Endogâmicos C57BL , Colágeno/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Transdução de Sinais , Miopia/genética , Esclera/metabolismoRESUMO
BACKGROUND: Stickler (STL) and Wagner (WGN) syndromes are rare inherited vitreoretinopathies associated with retinal detachments (RD). There is a paucity of case reports describing these diseases in African American patients. METHODS: An IRB-approved, retrospective chart review of African American patients with genetically proven ocular-only STL or WGN was performed, and 6 patients were identified. RESULTS: Three patients had a COL2A1 mutation, two had a COL11A1 mutation, and one had a VCAN mutation. None had Pierre Robin facies. All were myopes with lattice degeneration and five had RD. Three underwent RD repair with vitrectomy (PPV), scleral buckle (SB), endolaser (EL), and silicone oil (SO). Two received laser retinopexy for localized RD and one received a prophylactic SB with 360° peripheral laser retinopexy. CONCLUSION: STL and WGN should be considered in myopic African American patients with lattice degeneration, giant retinal tears, abnormal vitreous, or spontaneous RD. Prophylactic laser treatment and aggressive surgical treatment of RD should be considered. [Ophthalmic Surg Lasers Imaging Retina 2023;54:97-101.].