Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517106

RESUMO

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Proteínas de Fusão Oncogênica , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Adolescente , Criança , Feminino , Humanos , Masculino , Antígenos CD34/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/patologia , Receptores Proteína Tirosina Quinases , Neoplasias Cutâneas/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Proteínas de Fusão Oncogênica/genética , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética
2.
Mol Biol Cell ; 34(13): ar129, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819702

RESUMO

Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.


Assuntos
Actinas , Junções Aderentes , Actinas/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Citocinese , Células Epiteliais/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Humanos
3.
Mol Biol Cell ; 34(7): ar71, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074945

RESUMO

Nonmuscle myosin IIB (NMIIB) is considered a primary force generator during cell motility. Yet many cell types, including motile cells, do not necessarily express NMIIB. Given the potential of cell engineering for the next wave of technologies, adding back NMIIB could be a strategy for creating supercells with strategically altered cell morphology and motility. However, we wondered what unforeseen consequences could arise from such an approach. Here, we leveraged pancreatic cancer cells, which do not express NMIIB. We generated a series of cells where we added back NMIIB and strategic mutants that increase the ADP-bound time or alter the phosphorylation control of bipolar filament assembly. We characterized the cellular phenotypes and conducted RNA-seq analysis. The addition of NMIIB and the different mutants all have specific consequences for cell morphology, metabolism, cortical tension, mechanoresponsiveness, and gene expression. Major modes of ATP production are shifted, including alterations in spare respiratory capacity and the dependence on glycolysis or oxidative phosphorylation. Several metabolic and growth pathways undergo significant changes in gene expression. This work demonstrates that NMIIB is highly integrated with many cellular systems and simple cell engineering has a profound impact that extends beyond the primary contractile activity presumably being added to the cells.


Assuntos
Miosina não Muscular Tipo IIA , Miosina não Muscular Tipo IIB , Miosina não Muscular Tipo IIB/metabolismo , Reprogramação Celular , Citoesqueleto/metabolismo , Contração Muscular , Fosforilação , Miosina não Muscular Tipo IIA/metabolismo
4.
J Biol Chem ; 298(12): 102634, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273584

RESUMO

Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.


Assuntos
Miosina não Muscular Tipo IIB , Plasmodium falciparum , Proteínas de Protozoários , Actinas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Miosinas/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(43): e2200215119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252004

RESUMO

Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.


Assuntos
Caquexia , Cadeias Pesadas de Miosina , Neoplasias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Actinas/metabolismo , Caquexia/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/complicações , Neoplasias/genética , Neoplasias/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216482

RESUMO

Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.


Assuntos
Adipócitos/metabolismo , Adipócitos/fisiologia , Adipogenia/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miosinas/metabolismo , Fosforilação/fisiologia , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia
7.
Cancer Lett ; 524: 245-258, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715250

RESUMO

The stiffening of the extracellular matrix (ECM) during tumor progression results in an increase in cancer cell motility. In cell migration, two major isoforms of non-muscle myosin II (NMII), NMIIA and NMIIB, are expressed and assembled into the cytoskeleton. However, the isoform-specific regulatory roles of NMIIA and NMIIB as well as the underlying mechanisms in response to mechanical cues of the ECM are still elusive. Here, based on polyacrylamide (PAA) gels with tunable elastic modulus, we mimicked the mechanical properties of tumor tissue at different stages of breast cancer in vitro and investigated the distinct roles of NMII isoforms in the regulation of substrate stiffness. We demonstrate that NMIIA is engaged in establishing cell polarity by facilitating lamellipodia formation, focal adhesion turnover, and actin polymerization at the cell leading edge, while NMIIB is recruited to the cell perinuclear region and contributes to traction force generation and polarized distribution, both in a substrate stiffness-dependent manner. We further validated that substrate stiffness modulates the distribution and activation of NMII isoforms via the Rac1/p-PAK1/pS1916-NMIIA and PKCζ/pS1935-NMIIB signaling pathways in a site- and kinase-specific phosphoregulation manner. Our study is helpful for understanding the mechanotransduction of cancer cells and provides inspiration for molecular targets in antimetastatic therapy.


Assuntos
Neoplasias da Mama/genética , Matriz Extracelular/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Polaridade Celular/genética , Feminino , Humanos , Mecanotransdução Celular/genética , Isoformas de Proteínas/genética , Transdução de Sinais/genética , Especificidade por Substrato , Quinases Ativadas por p21/genética , Proteínas rac1 de Ligação ao GTP/genética
8.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730180

RESUMO

The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remain incompletely understood. Here, we show that, in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB; heavy chain encoded by MYH10), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA (heavy chain encoded by MYH9) mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization. This article has an associated First Person interview with the first author of the paper.


Assuntos
Miosina não Muscular Tipo IIA , Actinina/genética , Actinas/genética , Movimento Celular/genética , Humanos , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética
9.
J Cell Mol Med ; 25(24): 11142-11156, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738311

RESUMO

Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down-regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.


Assuntos
Carcinoma Hepatocelular/etiologia , Deleção Cromossômica , Cromossomos Humanos Par 17 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/etiologia , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Transdução de Sinais , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional , Modelos Animais de Doenças , Suscetibilidade a Doenças , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Elife ; 102021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374341

RESUMO

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.


Assuntos
Elasticidade , Miosina Tipo II/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Homeostase , Humanos , Modelos Teóricos , Miosina Tipo II/classificação , Miosina Tipo II/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Isoformas de Proteínas
11.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060193

RESUMO

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Assuntos
Fator de Transcrição GATA1 , Megacariócitos , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Trombocitopenia , Plaquetas , Fator de Transcrição GATA1/genética , Inativação Gênica , Humanos , Trombocitopenia/genética , Trombopoese/genética , Fatores de Transcrição
12.
Oncogene ; 40(19): 3434-3448, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888868

RESUMO

Extramedullary infiltration (EMI), as a concomitant symptom of acute myeloid leukemia (AML), is associated with low complete remission and poor prognosis in AML. However, the mechanism of EMI remains indistinct. Clinical trials showed that increased miR-29s were associated with a poor overall survival in AML [14]. Nevertheless, they were proved to work as tumor suppressor genes by encouraging apoptosis and inhibiting proliferation in vitro. These contradictory results led us to the hypothesis that miR-29s may play a notable role in the prognosis of AML rather than leukemogenesis. Thus, we explored the specimens of AML patients and addressed this issue into miR-29c&b2 knockout mice. As a result, a poor overall survival and invasive blast cells were observed in high miR-29c&b2-expression patients, and the wildtype mice presented a shorter survival with heavier leukemia infiltration in extramedullary organs. Subsequently, we found that the miR-29c&b2 inside leukemia cells promoted EMI, but not the one in the microenvironment. The analysis of signal pathway revealed that miR-29c&b2 could target HMG-box transcription factor 1 (Hbp1) directly, then reduced Hbp1 bound to the promoter of non-muscle myosin IIB (Myh10) as a transcript inhibitor. Thus, increased Myh10 encouraged the migration of leukemia cells. Accordingly, AML patients with EMI were confirmed to have high miR-29c&b2 and MYH10 with low HBP1. Therefore, we identify that miR-29c&b2 contribute to the poor prognosis of AML patients by promoting EMI, and related genes analyses are prospectively feasible in assessment of AML outcome.


Assuntos
Leucemia Mieloide Aguda/genética , Infiltração Leucêmica/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Infiltração Leucêmica/metabolismo , Infiltração Leucêmica/patologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Prognóstico , Proteínas Repressoras/metabolismo , Taxa de Sobrevida , Adulto Jovem
13.
Clin Sci (Lond) ; 135(1): 167-183, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33393635

RESUMO

Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).


Assuntos
Apoptose , Proliferação de Células , Músculo Liso/metabolismo , Miosina Tipo II/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina não Muscular Tipo IIB/metabolismo , Próstata/efeitos dos fármacos , Próstata/patologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Isoformas de Proteínas , Transdução de Sinais
14.
Mol Biol Cell ; 32(3): 226-236, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326251

RESUMO

Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell-cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.


Assuntos
Endocitose/fisiologia , Miosina Tipo II/metabolismo , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Antígenos CD59/metabolismo , Células CACO-2 , Caderinas/metabolismo , Clatrina/metabolismo , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Miosina Tipo II/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Isoformas de Proteínas/metabolismo , Quinases Associadas a rho/fisiologia
15.
Mol Biol Cell ; 31(18): 1974-1987, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32583739

RESUMO

Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase-activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.


Assuntos
Neovascularização Fisiológica/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Indutores da Angiogênese , Animais , Colágeno/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Neovascularização Fisiológica/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo
16.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311005

RESUMO

Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.


Assuntos
Citoesqueleto de Actina/enzimologia , Adesão Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , RNA Interferente Pequeno , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo , Transativadores/genética , Transcriptoma/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Vinculina/genética , Vinculina/metabolismo
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(2): 340-348, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32329288

RESUMO

This study aimed to explore the role of miR-130a-3p in cardiomyocyte hypertrophy and its underlying mechanisms. Pressure-overload induced myocardial hypertrophy mice model was constructed by thoracic aortic constriction (TAC). In vitro, norepinephrine (NE) was used to stimulate neonatal rat cardiomyocytes (NRCMs) and H9c2 rat cardiomyocytes to induce hypertrophic phenotypes. The expression of miR-130a-3p was detected in mice hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. The mimics and inhibitors of miR-130a-3p were transfected into H9c2 cells to observe the role of miR-130a-3p on the hypertrophic phenotype change of cardiomyocytes separately. Furthermore, whether miR-130a-3p regulated hypertrophic related signaling pathways was explored. The results showed that the expression of miR-130a-3p was significantly decreased in hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. After transfection of miR-130a-3p mimics, the expression of hypertrophic marker genes, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MHC), and the cell surface area were notably down-regulated compared with the control group (mimics N.C. + NE group). But after transfection of miR-130a-3p inhibitor, the expression of ANP, BNP and ß-MHC in H9c2 cells increased significantly, and the cell area increased further. By Western blot, it was found that the protein phosphorylation level of Akt and mTOR were down-regulated after over-expression of miR-130a-3p. These results suggest that miR-130a-3p mimics may alleviate the degree of cardiomyocyte hypertrophy, meanwhile its inhibitor can further aggravate cardiomyocyte hypertrophy. Over-expression of miR-130a-3p may attenuate cardiomyocytes hypertrophy by affecting the Akt pathway.


Assuntos
MicroRNAs/genética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Fator Natriurético Atrial , Cardiomegalia , Camundongos , Cadeias Pesadas de Miosina , Peptídeo Natriurético Encefálico , Miosina não Muscular Tipo IIB , Proteínas Proto-Oncogênicas c-akt , Ratos
18.
J Biochem ; 167(1): 25-39, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599953

RESUMO

Precise regulation of cytoskeletal dynamics is important in many fundamental cellular processes such as cell shape determination. Actin and microtubule (MT) cytoskeletons mutually regulate their stability and dynamics. Nonmuscle myosin II (NMII) is a candidate protein that mediates the actin-MT crosstalk. NMII regulates the stability and dynamics of actin filaments to control cell morphology. Additionally, previous reports suggest that NMII-dependent cellular contractility regulates MT dynamics, and MTs also control cell morphology; however, the detailed mechanism whereby NMII regulates MT dynamics and the relationship among actin dynamics, MT dynamics and cell morphology remain unclear. The present study explores the roles of two well-characterized NMII isoforms, NMIIA and NMIIB, on the regulation of MT growth dynamics and cell morphology. We performed RNAi and drug experiments and demonstrated the NMII isoform-specific mechanisms-NMIIA-dependent cellular contractility upregulates the expression of some mammalian diaphanous-related formin (mDia) proteins that suppress MT dynamics; NMIIB-dependent inhibition of actin depolymerization suppresses MT growth independently of cellular contractility. The depletion of either NMIIA or NMIIB resulted in the increase in cellular morphological dynamicity, which was alleviated by the perturbation of MT dynamics. Thus, the NMII-dependent control of cell morphology significantly relies on MT dynamics.


Assuntos
Forma Celular , Microtúbulos/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Citoesqueleto/metabolismo , Humanos , Células Tumorais Cultivadas
19.
Elife ; 82019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486768

RESUMO

Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.


Assuntos
Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Cães , Humanos , Ligação Proteica
20.
Mol Biol Cell ; 30(16): 1961-1973, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31318315

RESUMO

Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Actomiosina/metabolismo , Animais , Polaridade Celular , Forma Celular , Fibroblastos/metabolismo , Camundongos , Microtúbulos/metabolismo , Fibras de Estresse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA