Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639160

RESUMO

Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.


Assuntos
Actinas/química , Actinas/metabolismo , Miosinas Cardíacas/metabolismo , Actinas/efeitos dos fármacos , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Miosinas Cardíacas/efeitos dos fármacos , Miosinas Cardíacas/fisiologia , Bovinos , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Cinética , Contração Muscular/fisiologia , Subfragmentos de Miosina/efeitos dos fármacos , Subfragmentos de Miosina/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Física , Ligação Proteica , Pirenos/química , Coelhos , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Bioorg Med Chem ; 28(22): 115742, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007555

RESUMO

To identify novel potent cardiac myosin activator, a series of diphenylalkylisoxazol-5-amine compounds 4-7 have been synthesized and evaluated for cardiac myosin ATPase activation. Among the 37 compounds, 4a (CMA at 10 µM = 81.6%), 4w (CMA at 10 µM = 71.2%) and 6b (CMA at 10 µM = 67.4%) showed potent cardiac myosin activation at a single concentration of 10 µM. These results suggested that the introduction of the amino-isoxazole ring as a bioisostere for urea group is acceptable for the cardiac myosin activation. Additional structure-activity relationship (SAR) studies were conducted. Para substitution (-Cl, -OCH3, -SO2N(CH3)2) to the phenyl rings or replacement of a phenyl ring with a heterocycle (pyridine, piperidine and tetrahydropyran) appeared to attenuate cardiac myosin activation at 10 µM. Additional hydrogen bonding acceptor next to the amino group of the isoxazoles did not enhance the activity. The potent isoxazole compounds showed selectivity for cardiac myosin activation over skeletal and smooth muscle myosin, and therefore these potent and selective isoxazole compounds could be considered as a new series of cardiac myosin ATPase activators for the treatment of systolic heart failure.


Assuntos
Adenosina Trifosfatases/metabolismo , Aminas/farmacologia , Miosinas Cardíacas/efeitos dos fármacos , Isoxazóis/farmacologia , Aminas/síntese química , Aminas/química , Miosinas Cardíacas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Relação Estrutura-Atividade
3.
Nat Commun ; 11(1): 3405, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636378

RESUMO

Omecamtiv mecarbil (OM) is a putative positive inotropic tool for treatment of systolic heart dysfunction, based on the finding that in vivo it increases the ejection fraction and in vitro it prolongs the actin-bond life time of the cardiac and slow-skeletal muscle isoforms of myosin. OM action in situ, however, is still poorly understood as the enhanced Ca2+-sensitivity of the myofilaments is at odds with the reduction of force and rate of force development observed at saturating Ca2+. Here we show, by combining fast sarcomere-level mechanics and ATPase measurements in single slow demembranated fibres from rabbit soleus, that the depressant effect of OM on the force per attached motor is reversed, without effect on the ATPase rate, by physiological concentrations of inorganic phosphate (Pi) (1-10 mM). This mechanism could underpin an energetically efficient reduction of systolic tension cost in OM-treated patients, whenever [Pi] increases with heart-beat frequency.


Assuntos
Miosinas Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miosinas/metabolismo , Fosfatos/farmacologia , Ureia/análogos & derivados , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Sinergismo Farmacológico , Masculino , Músculo Esquelético/metabolismo , Coelhos , Sarcômeros/metabolismo , Estresse Mecânico , Ureia/farmacologia
4.
Bioorg Med Chem Lett ; 28(14): 2369-2374, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29937058

RESUMO

To explore novel cardiac myosin activator, a series of diphenylalkyl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazoles have been prepared and tested for cardiac myosin ATPase activation in vitro. In all cases, three carbon spacer between the oxadiazole core and one of the phenyl ring was considered crucial. In case of 1,3,4-oxadiazole, zero to two carbon spacer between oxadiazole core and other phenyl ring are favorable. Phenyl ring can be replaced by cyclohexyl moiety. In case of 1,2,4-oxadiazole, zero or one carbon spacer between the oxadiazole and other phenyl ring are favorable. Introduction of hydrogen bonding donor (NH) group at the 2nd position of the 1,3,4-oxadiazole enhances the activity. Substitutions on either of the phenyl rings or change of phenyl ring to other heterocycle are not tolerated for both the oxadiazoles. The prepared oxadiazoles showed selective activation for cardiac muscle over smooth and skeleton muscles.


Assuntos
Adenosina Trifosfatases/metabolismo , Miosinas Cardíacas/efeitos dos fármacos , Oxidiazóis/farmacologia , Miosinas Cardíacas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 114(10): E1796-E1804, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223517

RESUMO

Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor. Our results demonstrate that OM stabilizes myosin's prepowerstroke structural state, supporting previous measurements showing that the drug shifts the equilibrium constant for myosin-catalyzed ATP hydrolysis toward the posthydrolysis biochemical state. OM slowed the actin-induced powerstroke, despite a twofold increase in the rate constant for actin-activated phosphate release, the biochemical step in myosin's ATPase cycle associated with force generation and the conversion of chemical energy into mechanical work. We conclude that OM alters the energetics of cardiac myosin's mechanical cycle, causing the powerstroke to occur after myosin weakly binds to actin and releases phosphate. We discuss the physiological implications for these changes.


Assuntos
Miosinas Cardíacas/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Miosinas/efeitos dos fármacos , Ureia/análogos & derivados , Animais , Técnicas Biossensoriais , Miosinas Cardíacas/química , Miosinas Cardíacas/isolamento & purificação , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/química , Bovinos , Galinhas , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Cinética , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Miocárdio/patologia , Miosinas/química , Fosfatos/química , Fosfatos/metabolismo , Coelhos , Ureia/administração & dosagem , Ureia/química
6.
Oncol Rep ; 32(4): 1473-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051015

RESUMO

4-Amino-2-trifluoromethyl-phenyl retinate (ATPR) is a novel all-trans retinoic acid (ATRA) derivative which was reported to have a superior antitumor effect in breast cancer cells. However, little is known about its antitumor effects on human gastric cancer cells and the mechanisms have not been fully elucidated. The results of the present study suggest that in the human gastric carcinoma cell line BGC-823, ATPR plays a more effective role than ATRA at the same dose in inhibiting proliferation, migration and inducing differentiation after the same treatment time. Furthermore, we investigated the preliminary mechanism of ATPR's anti­migration effect. Immunofluorescence assay demonstrated that claudin-18 positioned from cytoplasm to cell surface following ATPR stimuli. Real-time quantitative RT-PCR and western blot analyses showed that ATPR had significant effects on downregulation of the phosphorylation level of myosin light chain II (MLC II) by suppressing myosin light chain kinase (MLCK) and Rho-associated coiled-coil containing kinase (ROCK), as well as its regulation in the protein expression of RARα and RARß. Moreover, ATPR increased the activity of myosin phosphatase by inhibiting ROCK. Consequently, ATPR showed more promising antitumor effects than ATRA in BGC-823 in vitro, and it may conduct its anti-migration effects by decreasing the phosphorylation level of MLC II, as well as by regulating MLCK and ROCK as downstream target genes.


Assuntos
Antineoplásicos/farmacologia , Miosinas Cardíacas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cadeias Leves de Miosina/efeitos dos fármacos , Retinoides/farmacologia , Neoplasias Gástricas/metabolismo , Miosinas Cardíacas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
7.
Crit Care Med ; 36(1 Suppl): S112-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18158470

RESUMO

Given the limitations of high-dose diuretics and vasodilators and the increasing literature showing that inotropes, regardless of the dose used, have a detrimental effect on mortality, a variety of new agents are under investigation for the treatment of pulmonary and systemic congestion and restoration of cardiac output in the setting of acute heart failure syndromes. The new therapeutic approach is based on two goals: short-term improvement in symptoms together with long-term improvement of cardiac function. This review describes new agents that are in preclinical and in clinical phases with realistic prospects: anti-endothelin, natriuretic peptides, istaroxime, levosimendan, myosin activators, and vasopressin antagonists. Those new therapeutic strategies aim to act at the cellular level to improve vessel and heart functions, with minimal side effects, together with improved sodium and water balance.


Assuntos
Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Doença Aguda , Adenosina/antagonistas & inibidores , Adenosina Trifosfatases/efeitos dos fármacos , Antagonistas dos Receptores de Hormônios Antidiuréticos , Miosinas Cardíacas/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Cardiotônicos/farmacologia , Antagonistas dos Receptores de Endotelina , Insuficiência Cardíaca/fisiopatologia , Humanos , Hidrazonas/uso terapêutico , Peptídeos Natriuréticos/uso terapêutico , Piridazinas/uso terapêutico , Simendana
8.
J Am Coll Cardiol ; 48(12): 2397-409, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17174176

RESUMO

While pharmaceutical innovation has been highly successful in reducing mortality in chronic heart failure, this has not been matched by similar success in decompensated heart failure syndromes. Despite outstanding issues over definitions and end points, we argue in this paper that an unprecedented wealth of pharmacologic innovation may soon transform the management of these challenging patients. Agents that target contractility, such as cardiac myosin activators and novel adenosine triphosphate-dependent transmembrane sodium-potassium pump inhibitors, provide inotropic support without arrhythmogenic increases in cytosolic calcium or side effects of more traditional agents. Adenosine receptor blockade may improve glomerular filtration and diuresis by exerting a direct beneficial effect on glomerular blood flow while vasopressin antagonists promote free water excretion without compromising renal function and may simultaneously inhibit myocardial remodeling. Urodilatin, the renally synthesized isoform of atrial natriuretic peptide, may improve pulmonary congestion via vasodilation and enhanced diuresis. Finally, metabolic modulators such as perhexiline may optimize myocardial energy utilization by shifting adenosine triphosphate production from free fatty acids to glucose, a unique and conceptually appealing approach to the management of heart failure. These advances allow optimism not only for the advancement of our understanding and management of decompensated heart failure syndromes but for the translational research effort in heart failure biology in general.


Assuntos
Cardiotônicos/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Natriuréticos/uso terapêutico , Antagonistas dos Receptores de Hormônios Antidiuréticos , Fator Natriurético Atrial/uso terapêutico , Miosinas Cardíacas/efeitos dos fármacos , Etiocolanolona/análogos & derivados , Etiocolanolona/uso terapêutico , Humanos , Fragmentos de Peptídeos/uso terapêutico , Perexilina/uso terapêutico , Antagonistas de Receptores Purinérgicos P1 , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA