Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Elife ; 132024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752835

RESUMO

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Assuntos
Hibernação , Animais , Hibernação/fisiologia , Metabolismo Energético , Miosinas de Músculo Esquelético/metabolismo , Ursidae/metabolismo , Ursidae/fisiologia , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteômica
2.
J Gen Physiol ; 155(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37227464

RESUMO

It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.


Assuntos
Miosinas , Miosinas de Músculo Esquelético , Masculino , Humanos , Miosinas de Músculo Esquelético/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Biophys Chem ; 292: 106936, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436358

RESUMO

The work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied. We have shown that T65D mutation drastically decreased the sliding velocity of thin filaments in an in vitro motility assay and strongly increased the duration of actin-myosin interaction in optical trap experiments. These effects of T65D mutation in LC1 observed only with the whole myosin but not with S1 were prevented by double T65D/S193D mutation. The T65D and T65D/S193D mutations increased actin-activated ATPase activity of S1 and decreased ADP affinity for the actin-S1 complex. The results indicate that pseudo-phosphorylation of LC1 differently affects the properties of the whole myosin molecule and its isolated head. Also, the results show that phosphorylation of LC1 of skeletal myosin could be one more mechanism of regulation of actin-myosin interaction that needs further investigation.


Assuntos
Actinas , Miosinas de Músculo Esquelético , Fosforilação , Miosinas , Músculo Esquelético
4.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288901

RESUMO

We report a case in which sub-stoichiometric binding of an actin-binding protein has profound structural and functional consequences, providing an insight into the fundamental properties of actin regulation. Rng2 is an IQGAP contained in contractile rings in the fission yeast Schizosaccharomyces pombe Here, we used high-speed atomic force microscopy and electron microscopy and found that sub-stoichiometric binding of the calponin-homology actin-binding domain of Rng2 (Rng2CHD) induces global structural changes in skeletal muscle actin filaments, including shortening of the filament helical pitch. Sub-stoichiometric binding of Rng2CHD also reduced the affinity between actin filaments and muscle myosin II carrying ADP and strongly inhibited the motility of actin filaments on myosin II in vitro. On skeletal muscle myosin II-coated surfaces, Rng2CHD stopped the actin movements at a binding ratio of 11%. Rng2CHD also inhibited actin movements on myosin II of the amoeba Dictyostelium, but in this case, by detaching actin filaments from myosin II-coated surfaces. Thus, sparsely bound Rng2CHD induces apparently cooperative structural changes in actin filaments and inhibits force generation by actomyosin II.


Assuntos
Dictyostelium , Schizosaccharomyces , Actinas/metabolismo , Actomiosina/metabolismo , Dictyostelium/metabolismo , Miosinas de Músculo Esquelético/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Difosfato de Adenosina/metabolismo
5.
J Thromb Haemost ; 19(1): 7-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920971

RESUMO

Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.


Assuntos
Miosinas Cardíacas , Miosinas de Músculo Esquelético , Animais , Coagulação Sanguínea , Fator Va , Fator Xa , Camundongos , Miosinas , Trombina
6.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035452

RESUMO

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Assuntos
Músculo Esquelético/metabolismo , Miosinas de Músculo Esquelético/efeitos dos fármacos , Miosinas de Músculo Esquelético/genética , Adulto , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Miosinas/efeitos dos fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Miosinas de Músculo Esquelético/metabolismo
8.
Nano Lett ; 17(2): 1262-1268, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112520

RESUMO

Despite recent advances in thermometry, determination of temperature at the nanometer scale in single molecules to live cells remains a challenge that holds great promise in disease detection among others. In the present study, we use a new approach to nanometer scale thermometry with a spatial and thermal resolution of 80 nm and 1 mK respectively, by directly associating 2 nm cadmium telluride quantum dots (CdTe QDs) to the subject under study. The 2 nm CdTe QDs physically adhered to bovine cardiac and rabbit skeletal muscle myosin, enabling the determination of heat released when ATP is hydrolyzed by both myosin motors. Greater heat loss reflects less work performed by the motor, hence decreased efficiency. Surprisingly, we found rabbit skeletal myosin to be more efficient than bovine cardiac. We have further extended this approach to demonstrate the gain in efficiency of Drosophila melanogaster skeletal muscle overexpressing the PGC-1α homologue spargel, a known mediator of improved exercise performance in humans. Our results establish a novel approach to determine muscle efficiency with promise for early diagnosis and treatment of various metabolic disorders including cancer.


Assuntos
Compostos de Cádmio/química , Miosinas Cardíacas/química , Músculo Esquelético/fisiologia , Pontos Quânticos/química , Miosinas de Músculo Esquelético/química , Telúrio/química , Trifosfato de Adenosina/química , Animais , Bovinos , Drosophila melanogaster/fisiologia , Fluorescência , Hidrólise , Masculino , Nanotecnologia , Tamanho da Partícula , Coelhos , Miosinas de Músculo Esquelético/fisiologia , Propriedades de Superfície , Temperatura , Termometria
9.
Proc Natl Acad Sci U S A ; 113(46): 13009-13014, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799519

RESUMO

We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.


Assuntos
Alcaloides/farmacologia , Metabolismo Basal/efeitos dos fármacos , Benzodioxóis/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Obesidade/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Adenosina Trifosfatases/metabolismo , Alcaloides/uso terapêutico , Animais , Benzodioxóis/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Fibras Musculares de Contração Rápida/metabolismo , Obesidade/tratamento farmacológico , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Coelhos , Miosinas de Músculo Esquelético/metabolismo , Regulação para Cima
10.
J Biol Chem ; 291(4): 1763-1773, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26586917

RESUMO

The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miosinas de Músculo Esquelético/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Hidrólise , Cinética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Miosinas de Músculo Esquelético/química , Miosinas de Músculo Esquelético/genética
11.
Appl Physiol Nutr Metab ; 40(12): 1294-301, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26579948

RESUMO

This study evaluated the effects of dietary ß-hydroxy-ß-methylbutyrate (HMB) combined with ß-alanine (ß-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or ß-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and ß-Ala (HMB+ß-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+ß-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+ß-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+ß-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+ß-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+ß-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).


Assuntos
Envelhecimento , Suplementos Nutricionais , Contração Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Sarcopenia/prevenção & controle , Comportamento Sedentário , Valeratos/farmacologia , beta-Alanina/farmacologia , Fatores Etários , Animais , Autofagia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Masculino , Fadiga Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fosforilação , Proteólise , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Miosinas de Músculo Esquelético/metabolismo , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS One ; 10(7): e0134303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222548

RESUMO

A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.


Assuntos
Malus , Fibras Musculares Esqueléticas/fisiologia , Resistência Física/fisiologia , Compostos Fitoquímicos/administração & dosagem , Polifenóis/administração & dosagem , Animais , Estimulação Elétrica , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Mioglobina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/fisiologia , Ratos , Ratos Endogâmicos F344 , Miosinas de Músculo Esquelético/metabolismo
13.
Am J Physiol Cell Physiol ; 308(6): C473-84, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25567808

RESUMO

Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Miosinas/metabolismo , Músculo Quadríceps/metabolismo , Actinas/metabolismo , Adulto , Feminino , Humanos , Cinética , Masculino , Miofibrilas/metabolismo , Miosina Tipo I/metabolismo , Isoformas de Proteínas , Músculo Quadríceps/citologia , Fatores Sexuais , Transdução de Sinais , Miosinas de Músculo Esquelético/metabolismo , Adulto Jovem
14.
Ann Anat ; 199: 73-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25159858

RESUMO

Bone density and quantity are primary conditions for the insertion and stability of dental implants. In cases of a lack of adequate maxillary or mandibulary bone, bone augmentation will be necessary. The use of synthetic bioactive bone substitution materials is of increasing importance as alternatives to autogenously bone grafts. It is well known that bone can influence muscle function and muscle function can influence bone structures. Muscles have a considerable potential of adaptation and muscle tissue surrounding an inserted implant or bone surrogate can integrate changes in mechanical load of the muscle and hereupon induce signaling cascades with protein synthesis and arrangement of the cytoskeleton. The Musculus latissimus dorsi is very often used for the analyses of the in vivo biocompatibility of newly designed biomaterials. Beside macroscopically and histologically examination, biocompatibility can be assessed by analyses of the biomaterial influence of gene expression. This review discusses changes in the fiber type distribution, myosin heavy chain isoform composition, histological appearance and vascularization of the skeletal muscle after implantation of bone substitution materials. Especially, the effects of bone surrogates should be described at the molecular-biological and cellular level.


Assuntos
Substitutos Ósseos , Músculo Esquelético/fisiologia , Materiais Biocompatíveis , Coristoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Teste de Materiais , Próteses e Implantes , Miosinas de Músculo Esquelético/biossíntese
15.
Scand J Med Sci Sports ; 25(6): e547-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25441613

RESUMO

Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage.


Assuntos
Exercício Físico/fisiologia , Interleucina-6/sangue , Fibras Musculares Esqueléticas/enzimologia , Miosinas de Músculo Esquelético/sangue , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Creatina Quinase Forma MB/sangue , Teste de Esforço/instrumentação , Humanos , Masculino , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Força Muscular , Mialgia/diagnóstico , Medição da Dor , Sarcômeros/metabolismo , Fatores de Tempo , Adulto Jovem
16.
Biochim Biophys Acta ; 1834(12): 2620-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23954499

RESUMO

We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤1M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.


Assuntos
Actinas/química , Actomiosina/química , Trifosfato de Adenosina/química , Movimento , Subfragmentos de Miosina/química , Miosinas de Músculo Esquelético/química , Actinas/metabolismo , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Galinhas , Subfragmentos de Miosina/metabolismo , Miosinas de Músculo Esquelético/metabolismo
17.
Rev Med Chir Soc Med Nat Iasi ; 117(4): 851-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24502060

RESUMO

AIM: To present the particular morphological aspects of hypertrophied myocardium by determining protein expression profile, the role of creatine kinase in cardiac cell function and mitochondrial respiration using endomyocardial biopsy samples obtained at cardiac catheterization in patients with dilated cardiomyopathy (DCM). MATERIAL AND METHODS: The study included 43 DCM patients (37 men and 6 women, mean age 34 +/- 8.6 years). Protein content in myocardial samples was determined by quantitative immunoblotting and electrophoresis, morphometric indices were evaluated with a JEM-100C electron microscope, and mitochondrial respiratory parameters were determined with a Clark electrode in an oxigrtaphic cell. RESULTS: The study of the expression of hypertrophic protein markers showed increases in the amount of tubulin on average by 42%,desmin by 33%, and skeletal myosin beta-isoform by 20%, and of smooth muscle proteins--alpha-smooth muscle actin and SM22 on average by 1.5 times. In all DCM patients C-reactive protein (CRP) level was on average 52% and that of myosin light-chain kinase (MLCK) 70% higher. The morphometric study showed variable characteristics of cardiomyocytes in the entire patient group, particularly bizarre and oversized nuclei, determining us to divide the patients into two groups. The electrophoresis analysis of total creatine kinase fraction revealed significant alterations in the expression of creatine kinase isoenzymes. Mitochondrial respiration rate after addition of creatine was very low. CONCLUSIONS: We found a high content of myosin light-chain kinase and CRP in the myocardium of patients with DCM, proving their role in hypertrophy; and this can be used in the differential diagnosis of myocardial hypertrophy as a consequence of cardiomyocyte hypertrophy and a result of the fibrotic process. Energy disturbances are significantly more pronounced in patients with DCM, with a more significant cardiomyocyte hypertrophy and an obvious increase in the size of nuclei.


Assuntos
Actinas/genética , Miosinas Cardíacas/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Desmina/genética , Tubulina (Proteína)/genética , Adulto , Biomarcadores/metabolismo , Biópsia , Proteína C-Reativa/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Creatina Quinase/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Mitocôndrias/genética , Miócitos Cardíacos/metabolismo , Miosinas de Músculo Esquelético/genética
18.
Crit Care ; 16(5): R209, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23098317

RESUMO

INTRODUCTION: Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. METHODS: Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. RESULTS: These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. CONCLUSION: Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is, triggering the myosin loss, muscle wasting and myosin PTMs. The higher neuronal nitric oxide synthase expression found in the ICU patients and its cytoplasmic translocation are forwarded as a probable mechanism underlying these modifications. The positive effect of passive loading on muscle fiber function strongly supports the importance of early physical therapy and mobilization in deeply sedated and mechanically ventilated ICU patients.


Assuntos
Atrofia Muscular/prevenção & controle , Atrofia Muscular/fisiopatologia , Suporte de Carga/fisiologia , Actinas/metabolismo , Idoso , Biópsia , Estudos de Casos e Controles , Sedação Consciente , Citoplasma/metabolismo , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Terapia Passiva Contínua de Movimento , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico Sintase/metabolismo , Respiração Artificial , Sarcolema/metabolismo , Miosinas de Músculo Esquelético/metabolismo , Translocação Genética , Ultrassonografia
19.
J Strength Cond Res ; 26(12): 3461-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22955630

RESUMO

The electrophoretic separation of myosin heavy chain isoforms from muscle biopsy homogenates has been widely practiced in the field of exercise physiology to examine how intrinsic (i.e., aging) and extrinsic (i.e., training) factors affect muscle phenotype. In the past, various research groups have used large and mini polyacrylamide gel systems to perform this delicate methodology. As technology has progressed, additional gel formats have been introduced, but available methodologies appear to be lacking. In this investigation, we successfully separated 3 distinct myosin heavy chain isoforms from various muscle samples using a modified mini gel system that can load up to 26 samples per gel. This article will outline our allocated protocol and discuss potential troubleshooting considerations for other researchers performing this intricate methodology. The outlined methodology has resulted in an ability to clearly resolute 3 distinct bands at molecular weights attributed to the myosin heavy chain isoforms in human skeletal muscle at a wide range of human ages (20-78 years). As additional technologies become available, the need to modify and adapt existing electrophoretic protocols for myosin heavy chain isoform separation and other protocols will continue to be evident.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Músculo Esquelético/química , Cadeias Pesadas de Miosina/isolamento & purificação , Miosinas de Músculo Esquelético/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/química , Isoformas de Proteínas , Reprodutibilidade dos Testes , Miosinas de Músculo Esquelético/química
20.
J Muscle Res Cell Motil ; 33(6): 403-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22847802

RESUMO

We aimed to establish reference parameters to identify functional effects of familial hypertrophic cardiomyopathy-related point mutations in the ß-cardiac/slow skeletal muscle myosin heavy chain (ß-cardiac/MyHC-1). We determined mechanical and kinetic parameters of the ß-cardiac/MyHC-1 using human soleus muscle fibers that express the same myosin heavy chain (MyHC-1) as ventricular myocardium (ß-cardiac). The observed parameters are compared to previously reported data for rabbit psoas muscle fibers. We found all of the examined kinetic parameters to be slower in soleus fibers than in rabbit psoas muscle. Somewhat surprisingly, however, we also found that the stiffness of the ß-cardiac/MyHC-1 head domain is more than 3-fold lower than the stiffness of the fast isoform of psoas fibers. Furthermore, and different from rabbit psoas muscle, in human soleus fibers both the occupancy of force-generating cross-bridge states as well as the elastic extension of force-generating heads increase with temperature. Thus, a myosin head in the force generating states makes an increasing contribution to force with temperature. We support some of our fiber data by data from in vitro motility and optical trapping assays. Initial findings with FHC-related point mutations in the converter imply that the differences in stiffness of the head domain between the slow and fast isoform may well be due to particular differences in the amino acid sequence of the converter. We show that the slower kinetics may be linked to a larger flexibility of the ß-cardiac/MyHC-1 isoform compared to fast MyHC isoforms.


Assuntos
Miosinas de Músculo Esquelético/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Humanos , Cinética , Músculo Esquelético/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA