Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767381

RESUMO

Over the last decades, the evidence accumulated about the existence of respiratory supercomplexes (SCs) has changed our understanding of the mitochondrial electron transport chain organization, giving rise to the proposal of the "plasticity model." This model postulates the coexistence of different proportions of SCs and complexes depending on the tissue or the cellular metabolic status. The dynamic nature of the assembly in SCs would allow cells to optimize the use of available fuels and the efficiency of electron transfer, minimizing reactive oxygen species generation and favoring the ability of cells to adapt to environmental changes. More recently, abnormalities in SC assembly have been reported in different diseases such as neurodegenerative disorders (Alzheimer's and Parkinson's disease), Barth Syndrome, Leigh syndrome, or cancer. The role of SC assembly alterations in disease progression still needs to be confirmed. Nevertheless, the availability of enough amounts of samples to determine the SC assembly status is often a challenge. This happens with biopsy or tissue samples that are small or have to be divided for multiple analyses, with cell cultures that have slow growth or come from microfluidic devices, with some primary cultures or rare cells, or when the effect of particular costly treatments has to be analyzed (with nanoparticles, very expensive compounds, etc.). In these cases, an efficient and easy-to-apply method is required. This paper presents a method adapted to obtain enriched mitochondrial fractions from small amounts of cells or tissues to analyze the structure and function of mitochondrial SCs by native electrophoresis followed by in-gel activity assays or western blot.


Assuntos
Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias/química , Humanos , Técnicas de Cultura de Células/métodos
2.
J Am Chem Soc ; 146(19): 12941-12949, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685727

RESUMO

Nucleic acids are mainly found in the mitochondria and nuclei of cells. Detecting nucleic acids in the mitochondrion and nucleus in cascade mode is crucial for understanding diverse biological processes. This study introduces a novel nucleic acid-based fluorescent styrene dye (SPP) that exhibits light-driven cascade migration from the mitochondrion to the nucleus. By introducing N-arylpyridine on one side of the styrene dye skeleton and a bis(2-ethylsulfanyl-ethy)-amino unit on the other side, we found that SPP exhibits excellent DNA specificity (16-fold, FDNA/Ffree) and a stronger binding force to nuclear DNA (-5.09 kcal/mol) than to mitochondrial DNA (-2.59 kcal/mol). SPP initially accumulates in the mitochondrion and then migrates to the nucleus within 10 s under light irradiation. By tracking the damage to nucleic acids in apoptotic cells, SPP allows the successful visualization of the differences between apoptosis and ferroptosis. Finally, a triphenylamine segment with photodynamic effects was incorporated into SPP to form a photosensitizer (MTPA-SPP), which targets the mitochondria for photosensitization and then migrates to the nucleus under light irradiation for enhanced photodynamic cancer cell treatment. This innovative nucleic acid-based fluorescent molecule with light-triggered mitochondrion-to-nucleus migration ability provides a feasible approach for the in situ identification of nucleic acids, monitoring of subcellular physiological events, and efficient photodynamic therapy.


Assuntos
Núcleo Celular , Corantes Fluorescentes , Luz , Mitocôndrias , Imagem Óptica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/química , Núcleo Celular/metabolismo , Núcleo Celular/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , DNA/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Células HeLa , Apoptose/efeitos dos fármacos , Fotoquimioterapia , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem
3.
Analyst ; 149(10): 2796-2800, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38669149

RESUMO

A near-infrared fluorescent nanoprobe consisting of Nile blue-capped ZIF-90 is first proposed for real-time imaging of mitochondrial ATP. Owing to the strong binding of ATP with Zn2+, the structure of the probe is disrupted, leading to the release of fluorescent NB.


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Mitocôndrias , Oxazinas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Oxazinas/química , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Células HeLa , Raios Infravermelhos , Imagem Óptica/métodos , Nanopartículas/química
4.
Anal Chem ; 96(17): 6666-6673, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623755

RESUMO

Nitric oxide (NO) is a crucial signal molecule closely linked to the biological immune response, especially in macrophage polarization. When activated, macrophages enter a pro-inflammatory state and produce NO, a marker for the M1 phenotype. In contrast, the anti-inflammatory M2 phenotype does not produce NO. We developed a mitochondria-targeted two-photon iridium-based complex (Ir-ImNO) probe that can detect endogenous NO and monitor macrophages' different immune response states using various imaging techniques, such as one- and two-photon phosphorescence imaging and phosphorescence lifetime imaging. Ir-ImNO was used to monitor the immune activation of macrophages in mice. This technology aims to provide a clear and comprehensive visualization of macrophage immune responses.


Assuntos
Macrófagos , Mitocôndrias , Óxido Nítrico , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/química , Camundongos , Células RAW 264.7 , Irídio/química , Imagem Multimodal , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Imagem Óptica
5.
Anal Chem ; 96(16): 6493-6500, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38595323

RESUMO

Mitochondria play a crucial role in maintaining cellular homeostasis, and the depolarization of mitochondrial membrane potential (MMP) is an important signal of apoptosis. Additionally, protein misfolding and aggregation are closely related to diseases including neurodegenerative diseases, diabetes, and cancers. However, the interaction between MMP changes and disease-related protein aggregation was rarely studied. Herein, we report a novel "turn-on" fluorescent probe MitoRhB that specifically targets to mitochondria for Cu2+ detection in situ. The fluorescence lifetime (τ) of MitoRhB exhibits a positive correlation with MMP changes, allowing us to quantitatively determine the relative MMP during SOD1 (A4 V) protein aggregation. Finally, we found that (1) the increasing concentrations of copper will accelerate the depolarization of mitochondria and reduce MMP; (2) the depolarization of mitochondria can intensify the degree of protein aggregation, suggesting a new routine of copper-induced cell death mediated through abnormal MMP depolarization and protein aggregation.


Assuntos
Cobre , Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Agregados Proteicos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Células HeLa
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198994

RESUMO

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Corantes Fluorescentes/química , Peixe-Zebra , Sulfeto de Hidrogênio/análise , Mitocôndrias/química , Imagem Óptica , Células HeLa
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123714, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061106

RESUMO

YH-2 represents an innovative, non-invasive fluorescent probe featuring a structure based on flavonoid onium salts. It is characterized by a well-suited Stokes shift and emits in the near-infrared (NIR) wavelength range. Its capacity to distinguish between HeLa cells, HepG2 cells, and LO2 cells is attributed to differential intracellular viscosity. Experimental results validate the heightened viscosity of organelles, such as the endoplasmic reticulum (ER), mitochondria and lysosomes in tumor cells compared to LO2 cells. Of paramount importance, YH-2 demonstrates the capability to swiftly image tumors within a mere 20 min following tail vein injection and this imaging ability can be sustained for an extended period of up to 5 h. This method offers a potential tumor diagnostic strategy in vivo.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Células HeLa , Corantes Fluorescentes/química , Mitocôndrias/química , Retículo Endoplasmático , Cloreto de Sódio , Imagem Óptica/métodos , Viscosidade
8.
Biosens Bioelectron ; 241: 115721, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788579

RESUMO

Herein, the Near-infrared imaging of hepatocellular carcinoma (HCC) and its medicinal treatment was achieved with a γ-glutamyl transpeptidase (GGT)-monitoring fluorescence probe KYZ-GGT which consisted of the typical recognition group γ-glutamyl and the structurally modified signal reporting group hemicyanine-thioxanthene. Compared with the recently reported probes, KYZ-GGT suggested practical and steady capability for monitoring the GGT level in the cellular, xenograft, induced as well as medicinal treatment HCC models. It realized the mitochondrial targeting intracellular imaging to reflect the GGT dynamics in the induction or medicinal treatment of HCC. In the xenograft and induced model mice with multiple factors, KYZ-GGT showed stable performance for visualizing the HCC status. In the medicinal treatment of the long-period-induced HCC model mice verified by the serum indexes and histopathological analysis, KYZ-GGT successfully imaged the medicinal treatment process of HCC with two marketed drugs (Sorafenib and Lenvatinib) respectively, with an applicative penetration depth. The information here was meaningful for investigating effective medicinal strategies for overcoming HCC.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , gama-Glutamiltransferase/análise , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/química
9.
Anal Bioanal Chem ; 415(20): 4949-4959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329467

RESUMO

Fluorescent turn-on probes have been extensively used in disease diagnosis and research on pathological disease mechanisms because of their low background interference. Hydrogen peroxide (H2O2) plays a vital role in regulating various cellular functions. In the current study, a fluorescent probe, HCyB, based on hemicyanine and arylboronate structures, was designed to detect H2O2. HCyB reacted with H2O2 and exhibited a good linear relationship for H2O2 concentrations ranging from 15 to 50 µM and good selectivity over other species. The fluorescent detection limit was 76 nM. Moreover, HCyB exhibited less toxicity and mitochondrial-targeting abilities. HCyB was successfully used to monitor exogenous or endogenous H2O2 in mouse macrophage RAW 264.7, human skin fibroblast WS1, breast cancer cell MDA-MB-231, and human leukemia monocytic THP1 cells.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Corantes Fluorescentes/química , Peróxido de Hidrogênio/química , Diagnóstico por Imagem , Mitocôndrias/química , Células HeLa
10.
Anal Chem ; 95(27): 10155-10162, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37376771

RESUMO

Abnormal changes occurring in the mitochondrial microenvironment are important markers indicating mitochondrial and cell dysfunction. Herein, we designed and synthesized a multifunctional fluorescent probe DPB that responds to polarity, viscosity, and peroxynitrite (ONOO-). DPB is composed of an electron donor (diethylamine group) and electron acceptor (coumarin, pyridine cations, and phenylboronic acid esters), in which the pyridine group with a positive charge is responsible for targeting to mitochondria. D-π-A structure with strong intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) properties give rise to respond to polarity and viscosity. The introduction of cyanogroup and phenylboronic acid esters increases the electrophilicity of the probe, which is prone to oxidation triggered by ONOO-. The integrated architecture satisfies the multiple response requirements. As the polarity increases, the fluorescence intensity of probe DPB at 470 nm is quenched by 97%. At 658 nm, the fluorescence intensity of DPB increases with viscosity and decreases with the concentration of ONOO-. Furthermore, the probe is not only successfully used to monitor mitochondrial polarity, viscosity, and endogenous/exogenous ONOO- level fluctuations but also to distinguish cancer cells from normal cells by multiple parameters. Therefore, as-prepared probe provides a reliable tool for better understanding of the mitochondrial microenvironment and also a potential approach for the diagnosis of disease.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Viscosidade , Mitocôndrias/química , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Piridinas/análise , Ácido Peroxinitroso/análise
11.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
12.
ACS Biomater Sci Eng ; 9(6): 3581-3589, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37252846

RESUMO

Irregularities in mitochondrial viscosity and peroxynitrite (ONOO-) concentration can lead to mitochondrial dysfunction. It is still a great challenge to develop near-infrared (NIR) fluorescent probes to simultaneously detect viscosity, endogenous ONOO-, and mitophagy. Herein, a multifunctional mitochondria-targeting NIR fluorescent probe P-1 was first synthesized for simultaneously detecting viscosity, ONOO-, and mitophagy. P-1 used quinoline cations as a mitochondrial targeting moiety, arylboronate as an ONOO- responsive group, and detected the change of viscosity by the twisted internal charge transfer (TICT) mechanism. The probe has an excellent response to the viscosity during inflammation by lipopolysaccharides (LPSs) and mitophagy induced by starvation at 670 nm. The viscosity changes of the probe induced by nystatin in zebrafish showed that P-1 was able to detect microviscosity in vivo. P-1 also showed good sensitivity with a detection limit of 6.2 nM for ONOO- detection and was successfully applied to the endogenous ONOO- detection in zebrafish. Moreover, P-1 has the ability to distinguish between cancer cells and normal cells. All of these features make P-1 a promising candidate to detect mitophagy and ONOO- -associated physiological and pathological processes.


Assuntos
Mitocôndrias , Mitofagia , Viscosidade , Mitocôndrias/química , Espectroscopia de Luz Próxima ao Infravermelho , Corantes Fluorescentes/química , Ácido Peroxinitroso/química , Animais , Peixe-Zebra
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122791, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141839

RESUMO

Mitochondria, as an energy-producing powerhouse in live cells, is considered to be directly linked to cellular health. However, dysfunctional mitochondria and abnormal mitochondria pH would possibly activate mitophagy, cell apoptosis and intercellular acidification process. In this work, we synthesized a novel near infrared fluorescent probe (FNIR-pH) for measurement of mitochondrial pH based on the hemicyanine skeleton as a fluorophore. The FNIR-pH probe functioned as a mitochondrial pH substrate and exhibited quick and sensitive turn-on fluorescence responses to mitochondrial pH in basic solution due to the deprotonation of hydroxy group in the structure. From pH 3.0 to 10.0, the FNIR-pH exhibited almost 100-fold increase in fluorescence intensity at 766 nm wavelength. The FNIR-pH also displayed superior selectivity to various metal ions, excellent photostability, and low cytotoxicity, which facilitated further biological application. Owing to the proper pKa value of 7.2, the FNIR-pH paved the way for real-time monitoring of mitochondria pH changes in live cells and sensitive sensing of mitophagy. Moreover, the FNIR-pH probe was also implemented for fluorescent imaging of tumor-bearing mice to validate its potential application for in vivo imaging of bioanalytes and biomarkers.


Assuntos
Corantes Fluorescentes , Mitofagia , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Mitocôndrias/química , Células HeLa , Concentração de Íons de Hidrogênio
14.
J Am Chem Soc ; 145(20): 11311-11322, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103240

RESUMO

Reliable probing of cardiolipin (CL) content in dynamic cellular milieux presents significant challenges and great opportunities for understanding mitochondria-related diseases, including cancer, neurodegeneration, and diabetes mellitus. In intact respiring cells, selectivity and sensitivity for CL detection are technically demanding due to structural similarities among phospholipids and compartmental secludedness of the inner mitochondrial membrane. Here, we report a novel "turn-on" fluorescent probe HKCL-1M for detecting CL in situ. HKCL-1M displays outstanding sensitivity and selectivity toward CL through specific noncovalent interactions. In live-cell imaging, its hydrolyzed product HKCL-1 efficiently retained itself in intact cells independent of mitochondrial membrane potential (Δψm). The probe robustly co-localizes with mitochondria and outperforms 10-N-nonyl acridine orange (NAO) and Δψm-dependent dyes with superior photostability and negligible phototoxicity. Our work thus opens up new opportunities for studying mitochondrial biology through efficient and reliable visualization of CL in situ.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Corantes Fluorescentes/química , Cardiolipinas/química , Mitocôndrias/química , Fosfolipídeos/análise , Membranas Mitocondriais
15.
Adv Mater ; 35(29): e2301099, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086266

RESUMO

Hydrogen sulfide (H2 S)-based mitochondrial bioenergetic intervention is an attractive therapeutic modality. However, its therapeutic efficacy is limited owing to metabolic plasticity, which allows tumors to shift their metabolic phenotype between oxidative phosphorylation and glycolysis for energy compensation. To overcome this flexibility, a glycopolymer containing a caged H2 S and hydrogen peroxide (H2 O2 ) dual-donor (1-thio-ß-D-glucose [thioglucose]) is synthesized to wrap glucose oxidase (GOx) for complete depletion of tumorigenic energy sources. The loaded GOx catalyzes the glutathione-activated thioglucose to generate cytotoxic H2 S/H2 O2 , which further induces synergistic defects in mitochondrial function by suppressing cytochrome c oxidase expression and damaging the mitochondrial membrane potential. GOx also blocks glycolysis by depleting endogenous glucose. This synchronous intervention strategy exhibits good anticancer performance, broadening the horizon of antitumor bioenergetic therapy.


Assuntos
Metabolismo Energético , Mitocôndrias , Nanoestruturas , Animais , Camundongos , Mitocôndrias/química , Mitocôndrias/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
16.
Anal Chim Acta ; 1242: 340813, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657896

RESUMO

Viscosity is an important component of cell microenvironment, and abnormal mitochondrial viscosity is associated with many diseases such as tumor and fatty liver. Herein, a near-infrared fluorescence probe (QX-V) based on quinoline-xanthene dye for detecting viscosity is constructed. In high viscosity medium, the free rotation of single bond is inhibited and the fluorescence is released. The probe shows high sensitivity together with good selectivity. Notably, QX-V has a long excitation wavelength (710 nm) and emission wavelength (786 nm). At the same time, the probe is a positively charged molecule that can target mitochondria. QX-V can not only distinguish cancer cells from normal cells, but also make a distinction between normal cells and fatty hepatocytes. In addition, QX-V is used to image viscosity abnormality in tumor-bearing mice. The probe also has a good ability to image viscosity abnormality caused by liver injury in fatty-liver mice.


Assuntos
Fígado Gorduroso , Neoplasias , Humanos , Camundongos , Animais , Corantes Fluorescentes/química , Viscosidade , Imagem Óptica/métodos , Mitocôndrias/química , Células HeLa , Fígado Gorduroso/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
17.
Environ Int ; 171: 107695, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36574746

RESUMO

BACKGROUND: Particulate matter (PM) is associated with aging markers at birth, including telomeres and mitochondria. It is unclear whether markers of the core-axis of aging, i.e. tumor suppressor p53 (p53) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), are associated with prenatal air pollution and whether there are underlying mechanisms. METHODS: 556 mother-newborn pairs from the ENVIRONAGE birth cohort were recruited at the East Limburg Hospital in Genk (Belgium). In placenta and cord blood, telomere length (TL) and mitochondrial DNA content (mtDNAc) were measured using quantitative real-time polymerase chain reaction (qPCR). In cord plasma, p53 and PGC-1α protein levels were measured using ELISA. Daily ambient PM2.5 concentrations during gestation were calculated using a spatial temporal interpolation model. Distributed lag models (DLMs) were applied to assess the association between prenatal PM2.5 exposure and each molecular marker. Mediation analysis was performed to test for underlying mechanisms. RESULTS: A 5 µg/m3 increment in PM2.5 exposure was associated with -11.23 % (95 % CI: -17.36 % to -4.65 %, p = 0.0012) and -7.34 % (95 % CI: -11.56 % to -2.92 %, p = 0.0014) lower placental TL during the entire pregnancy and second trimester respectively, and with -12.96 % (95 % CI: -18.84 % to -6.64 %, p < 0.001) lower placental mtDNAc during the third trimester. Furthermore, PM2.5 exposure was associated with a 12.42 % (95 % CI: -1.07 % to 27.74 %, p = 0.059) higher cord plasma p53 protein level and a -3.69 % (95 % CI: -6.97 % to -0.31 %, p = 0.033) lower cord plasma PGC-1α protein level during the third trimester. Placental TL mediated 65 % of the negative and 17 % of the positive association between PM2.5 and placental mtDNAc and cord plasma p53 protein levels, respectively. CONCLUSION: Ambient PM2.5 exposure during pregnancy is associated with markers of the core-axis of aging, with TL as a mediating factor. This study strengthens the hypothesis of the air pollution induced core-axis of aging, and may unravel a possible underlying mediating mechanism in an early-life epidemiological context.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Recém-Nascido , Feminino , Gravidez , Material Particulado/análise , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/farmacologia , Placenta/química , Exposição Materna/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Envelhecimento , Mitocôndrias/química , DNA Mitocondrial/análise , Telômero , Poluentes Atmosféricos/análise
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121799, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067624

RESUMO

Mitochondria are the sites of respiration in cells, and they participate in many indispensable biological processes. Because variations in mitochondrial viscosity can lead to dysfunctions of mitochondrial structure and function (and even induce malignant diseases), new sensors that can accurately monitor changes in mitochondrial viscosity are essential. To better investigate these changes, we report the development and evaluation of a novel benzothiophene-quinoline-based fluorescent chemosensor (BQL) that was designed especially for monitoring mitochondrial viscosity. BQL demonstrated a large Stokes shift (minimizing interference from autofluorescence) and a good response to viscosity (using the TICT principle). Moreover, BQL demonstrated little to no pH-dependency, polarity-dependency, or interference from other analytes. Thus, BQL has an excellent specificity for viscosity. BQL was used to monitor viscosity changes in mitochondria induced by ion carriers, and was used to report on viscosity in real time during mitophagy. To sum up, BQL provided a new approach for detecting viscosity in living cells and in vivo. BQL should prove to be an excellent tool for the analysis of viscosity changes in live cells.


Assuntos
Imagem Óptica , Quinolinas , Corantes Fluorescentes/química , Células HeLa , Humanos , Mitocôndrias/química , Imagem Óptica/métodos , Quinolinas/análise , Tiofenos , Viscosidade
19.
J Biol Chem ; 298(9): 102336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931111

RESUMO

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Assuntos
Corantes Fluorescentes , Quelantes de Ferro , Mitocôndrias , Animais , Cálcio/metabolismo , Cátions Bivalentes/análise , Células Cultivadas , Fluorescência , Corantes Fluorescentes/química , Quelantes de Ferro/análise , Camundongos , Mitocôndrias/química , Proteínas Mitocondriais/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacologia
20.
Biochemistry (Mosc) ; 87(2): 179-190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35508909

RESUMO

In this review, we discuss the mechanisms of generation of membrane-bound protons using different energy sources in model and natural systems. Analysis of these mechanisms revealed that all three types of reactions include the same principal stage, which is dissociation of electrically neutral Brønsted acids at the interface during transition from the hydrophobic phase to water with a low dielectric constant. Special attention is paid to the fact that in one of the analyzed model systems, membrane-bound protons provide energy for the reaction of ATP synthesis. Similar mechanism for the generation of membrane-bound protons has been found in natural membranes involved in oxidative phosphorylation, in particular, on the membranes of mitoplasts and mitochondria. The energy of oxidative reactions required for ATP synthesis, is stored at the intermediate stage not only in the form of transmembrane electrochemical potential of protons, but also and perhaps mostly, as protons attached to the inner mitochondrial membrane. The process of energy storage in mitochondria is linked to the transfer of protons that simultaneously perform two functions. Protons on the membrane surface carry free energy and, at the same time, act as substrates facilitating the movement of F1F0-ATP-synthase biological machine.


Assuntos
Prótons , Água , Trifosfato de Adenosina/metabolismo , Mitocôndrias/química , Membranas Mitocondriais/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA