Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.647
Filtrar
1.
Nat Commun ; 15(1): 4277, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769288

RESUMO

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.


Assuntos
Mitocôndrias Cardíacas , Sódio , Animais , Ratos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Sódio/metabolismo , Masculino , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ratos Sprague-Dawley , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , ATPase Trocadora de Sódio-Potássio/metabolismo , Oxirredução , Ácido Succínico/metabolismo
2.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738849

RESUMO

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


Assuntos
NF-kappa B , Oxirredução , Material Particulado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Material Particulado/toxicidade , Ratos , Feminino , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731929

RESUMO

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Assuntos
Cardiomiopatias , Sepse , Sepse/complicações , Sepse/metabolismo , Humanos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose , Trifosfato de Adenosina/metabolismo
4.
Int J Med Sci ; 21(6): 983-993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774750

RESUMO

Previous studies have highlighted the protective effects of pyruvate kinase M2 (PKM2) overexpression in septic cardiomyopathy. In our study, we utilized cardiomyocyte-specific PKM2 knockout mice to further investigate the role of PKM2 in attenuating LPS-induced myocardial dysfunction, focusing on mitochondrial biogenesis and prohibitin 2 (PHB2). Our findings confirmed that the deletion of PKM2 in cardiomyocytes significantly exacerbated LPS-induced myocardial dysfunction, as evidenced by impaired contractile function and relaxation. Additionally, the deletion of PKM2 intensified LPS-induced myocardial inflammation. At the molecular level, LPS triggered mitochondrial dysfunction, characterized by reduced ATP production, compromised mitochondrial respiratory complex I/III activities, and increased ROS production. Intriguingly, the absence of PKM2 further worsened LPS-induced mitochondrial damage. Our molecular investigations revealed that LPS disrupted mitochondrial biogenesis in cardiomyocytes, a disruption that was exacerbated by the absence of PKM2. Given that PHB2 is known as a downstream effector of PKM2, we employed PHB2 adenovirus to restore PHB2 levels. The overexpression of PHB2 normalized mitochondrial biogenesis, restored mitochondrial integrity, and promoted mitochondrial function. Overall, our results underscore the critical role of PKM2 in regulating the progression of septic cardiomyopathy. PKM2 deficiency impeded mitochondrial biogenesis, leading to compromised mitochondrial integrity, increased myocardial inflammation, and impaired cardiac function. The overexpression of PHB2 mitigated the deleterious effects of PKM2 deletion. This discovery offers a novel insight into the molecular mechanisms underlying septic cardiomyopathy and suggests potential therapeutic targets for intervention.


Assuntos
Cardiomiopatias , Camundongos Knockout , Mitocôndrias Cardíacas , Miócitos Cardíacos , Proibitinas , Piruvato Quinase , Sepse , Animais , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Biogênese de Organelas , Lipopolissacarídeos/toxicidade , Masculino , Modelos Animais de Doenças
5.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705401

RESUMO

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavonas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Ácido Palmítico/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Flavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Mitofagia , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Mitofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Comprimidos , Linhagem Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618716

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Assuntos
Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica , Espécies Reativas de Oxigênio , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Cálcio/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos
8.
Eur J Histochem ; 68(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656259

RESUMO

This study investigated the impact of resveratrol on abnormal metabolic remodeling in atrial fibrillation (AF) and explored potential molecular mechanisms. An AF cell model was established by high-frequency electrical stimulation of HL-1 atrial muscle cells. Resveratrol concentrations were optimized using CCK-8 and flow cytometry. AF-induced increases in ROS and mitochondrial calcium, along with decreased adenosine triphosphate (ATP) and mitochondrial membrane potential, were observed. Resveratrol mitigated these changes and maintained normal mitochondrial morphology. Moreover, resveratrol acted through the SIRT3-dependent pathway, as evidenced by its ability to suppress AF-induced acetylation of key metabolic enzymes. SIRT3 overexpression controls acetylation modifications, suggesting its regulatory role. In conclusion, resveratrol's SIRT3-dependent pathway intervenes in AF-induced mitochondrial dysfunction, presenting a potential therapeutic avenue for AF-related metabolic disorders. This study sheds light on the role of resveratrol in mitigating AF-induced mitochondrial remodeling and highlights its potential as a novel treatment for AF.


Assuntos
Fibrilação Atrial , Resveratrol , Sirtuína 3 , Resveratrol/farmacologia , Sirtuína 3/metabolismo , Fibrilação Atrial/metabolismo , Fibrilação Atrial/tratamento farmacológico , Animais , Camundongos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Pharmacol Res ; 203: 107164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569981

RESUMO

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Assuntos
Doenças Cardiovasculares , Proteínas Mitocondriais , Proteínas Musculares , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
10.
Circ Res ; 134(4): 425-441, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299365

RESUMO

BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Cardiomiopatia Dilatada , RNA Longo não Codificante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Regulação para Baixo , Hibridização in Situ Fluorescente , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397087

RESUMO

It is well known that in the heart and kidney mitochondria, more than 95% of ATP production is supported by the ß-oxidation of long-chain fatty acids. However, the ß-oxidation of fatty acids by mitochondria has been studied much less than the substrates formed during the catabolism of carbohydrates and amino acids. In the last few decades, several discoveries have been made that are directly related to fatty acid oxidation. In this review, we made an attempt to re-evaluate the ß-oxidation of long-chain fatty acids from the perspectives of new discoveries. The single set of electron transporters of the cardiac mitochondrial respiratory chain is organized into three supercomplexes. Two of them contain complex I, a dimer of complex III, and two dimers of complex IV. The third, smaller supercomplex contains a dimer of complex III and two dimers of complex IV. We also considered other important discoveries. First, the enzymes of the ß-oxidation of fatty acids are physically associated with the respirasome. Second, the ß-oxidation of fatty acids creates the highest level of QH2 and reverses the flow of electrons from QH2 through complex II, reducing fumarate to succinate. Third, ß-oxidation is greatly stimulated in the presence of succinate. We argue that the respirasome is uniquely adapted for the ß-oxidation of fatty acids. The acyl-CoA dehydrogenase complex reduces the membrane's pool of ubiquinone to QH2, which is instantly oxidized by the smaller supercomplex, generating a high energization of mitochondria and reversing the electron flow through complex II, which reverses the electron flow through complex I, increasing the NADH/NAD+ ratio in the matrix. The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes a hydride (H-, a proton plus two electrons) transfer across the inner mitochondrial membrane, reducing the cytosolic pool of NADP(H), thus providing the heart with ATP for muscle contraction and energy and reducing equivalents for the housekeeping processes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Ácidos Graxos , Ácidos Graxos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácido Succínico/metabolismo , Succinatos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Sci Rep ; 14(1): 1290, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221535

RESUMO

During myocardial injury, inflammatory mediators and oxidative stress significantly increase to impair cardiac mitochondria. Emerging evidence has highlighted interplays between circadian protein-period 2 (Per2) and mitochondrial metabolism. However, besides circadian rhythm regulation, the direct role of Per2 in mitochondrial performance particularly following acute stress, remains unknown. In this study, we aim to determine the importance of Per2 protein's regulatory role in mitochondrial function following exposure to inflammatory cytokine TNFα and oxidative stressor H2O2 in human cardiomyocytes. Global warm ischemia (37 °C) significantly impaired complex I activity with concurrently reduced mitochondrial Per2 in adult mouse hearts. TNFα or H2O2 decreased Per2 protein levels and damaged mitochondrial respiratory function in adult mouse cardiomyocytes. Next, mitochondrial membrane potential ([Formula: see text] M) using JC-1 fluorescence probe and mitochondrial respiration capacity via Seahorse Cell Mito Stress Test were then detected in Per2 or control siRNA transfected AC16 Human Cardiomyocytes (HCM) that were subjected to 2 h-treatment of TNFα (100 ng/ml) or H2O2 (100 µM). After 4 h-treatment, cell death was also measured using Annexin V and propidium iodide apoptosis kit through flow cytometry. We found that knockdown of Per2 enhanced TNFα-induced cell death and TNFα- or H2O2-disrupted [Formula: see text]M, as well as TNFα- or H2O2-impaired mitochondrial respiration function. In conclusion, Per2 knockdown increases likelihood of cell death and mitochondrial dysfunction in human cardiomyocytes exposed to either TNFα or H2O2, supporting the protective role of Per2 in HCM during stress with a focus on mitochondrial function.


Assuntos
Peróxido de Hidrogênio , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Apoptose , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Circadianas Period/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230606

RESUMO

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Assuntos
Diferenciação Celular , Ácidos Graxos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miofibrilas , Oxirredução , Fosforilação Oxidativa , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Humanos , Ácidos Graxos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Miofibrilas/metabolismo , Miofibrilas/enzimologia , Células Cultivadas , Histonas/metabolismo , Histonas/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Regiões Promotoras Genéticas
14.
Redox Biol ; 70: 103047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295577

RESUMO

Ischemic tissues accumulate succinate, which is rapidly oxidized upon reperfusion, driving a burst of mitochondrial reactive oxygen species (ROS) generation that triggers cell death. In isolated mitochondria with succinate as the sole metabolic substrate under non-phosphorylating conditions, 90 % of ROS generation is from reverse electron transfer (RET) at the Q site of respiratory complex I (Cx-I). Together, these observations suggest Cx-I RET is the source of pathologic ROS in reperfusion injury. However, numerous factors present in early reperfusion may impact Cx-I RET, including: (i) High [NADH]; (ii) High [lactate]; (iii) Mildly acidic pH; (iv) Defined ATP/ADP ratios; (v) Presence of the nucleosides adenosine and inosine; and (vi) Defined free [Ca2+]. Herein, experiments with mouse cardiac mitochondria revealed that under simulated early reperfusion conditions including these factors, total mitochondrial ROS generation was only 56 ± 17 % of that seen with succinate alone (mean ± 95 % confidence intervals). Of this ROS, only 52 ± 20 % was assignable to Cx-I RET. A further 14 ± 7 % could be assigned to complex III, with the remainder (34 ± 11 %) likely originating from other ROS sources upstream of the Cx-I Q site. Together, these data suggest the relative contribution of Cx-I RET ROS to reperfusion injury may be overestimated, and other ROS sources may contribute a significant fraction of ROS in early reperfusion.


Assuntos
Complexo I de Transporte de Elétrons , Traumatismo por Reperfusão , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Elétrons , Transporte de Elétrons , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão/metabolismo , Reperfusão , Succinatos
15.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233399

RESUMO

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Assuntos
Trifosfato de Adenosina , Canais de Potássio , Trifosfato de Adenosina/metabolismo , Canais de Potássio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias Cardíacas/metabolismo
17.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139129

RESUMO

The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.


Assuntos
Cardiomiopatias , Mitocôndrias Cardíacas , Ratos , Animais , Isoproterenol/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Uridina/farmacologia , Uridina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatias/metabolismo , Potássio/metabolismo , Trifosfato de Adenosina/metabolismo
18.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943012

RESUMO

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo
19.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947632

RESUMO

Coxsackievirus B3 (CVB3), a single-stranded positive RNA virus, primarily infects cardiac myocytes and is a major causative pathogen for viral myocarditis (VMC), driving cardiac inflammation and organ dysfunction. However, whether and how myocardial damage is involved in CVB3-induced VMC remains unclear. Herein, we demonstrate that the CVB3 infection of cardiac myocytes results in the release of mitochondrial DNA (mtDNA), which functions as an important driver of cardiac macrophage inflammation through the stimulator of interferon genes (STING) dependent mechanism. More specifically, the CVB3 infection of cardiac myocytes promotes the accumulation of extracellular mtDNA. Such myocardial mtDNA is indispensable for CVB3-infected myocytes in that it induces a macrophage inflammatory response. Mechanistically, a CVB3 infection upregulates the expression of the classical DNA sensor STING, which is predominantly localized within cardiac macrophages in VMC murine models. Myocardial mtDNA efficiently triggers STING signaling in those macrophages, resulting in strong NF-kB activation when inducing the inflammatory response. Accordingly, STING-deficient mice are able to resist CVB3-induced cardiac inflammation, exhibiting minimal inflammation with regard to their functional cardiac capacities, and they exhibit higher survival rates. Moreover, our findings pinpoint myocardial mtDNA as a central element driving the cardiac inflammation of CVB3-induced VMC, and we consider the DNA sensor, STING, to be a promising therapeutic target for protecting against RNA viral infections.


Assuntos
Miocardite , Viroses , Animais , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias Cardíacas/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Viroses/metabolismo
20.
Cardiovasc Diabetol ; 22(1): 294, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891673

RESUMO

BACKGROUND: The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS: To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS: Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION: CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético , Insulina/farmacologia , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA