Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(1): 38, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414420

RESUMO

Cancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from SKF96365-treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/fisiologia , Neovascularização Patológica/metabolismo , Molécula 1 de Interação Estromal/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
2.
J Mol Med (Berl) ; 99(3): 373-382, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33409552

RESUMO

Vascular calcification may result from stimulation of osteogenic signalling with upregulation of the transcription factors CBFA1, MSX2 and SOX9, as well as alkaline phosphatase (ALPL), which degrades and thus inactivates the calcification inhibitor pyrophosphate. Osteogenic signalling further involves upregulation of the Ca2+-channel ORAI1. The channel is activated by STIM1 and then accomplishes store-operated Ca2+ entry. ORAI1 and STIM1 are upregulated by the serum & glucocorticoid inducible kinase 1 (SGK1) which is critically important for osteogenic signalling. Stimulators of vascular calcification include vasopressin. The present study explored whether exposure of human aortic smooth muscle cells (HAoSMCs) to vasopressin upregulates ORAI1 and/or STIM1 expression, store-operated Ca2+ entry and osteogenic signalling. To this end, HAoSMCs were exposed to vasopressin (100 nM, 24 h) without or with additional exposure to ORAI1 blocker MRS1845 (10 µM) or SGK1 inhibitor GSK-650394 (1 µM). Transcript levels were measured using q-RT-PCR, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and store-operated Ca2+ entry from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). As a result, vasopressin enhanced the transcript levels of ORAI1 and STIM1, store-operated Ca2+ entry, as well as the transcript levels of CBFA1, MSX2, SOX9 and ALPL. The effect of vasopressin on store-operated Ca2+ entry as well as on transcript levels of CBFA1, MSX2, SOX9 and ALPL was virtually abrogated by MRS1845 and GSK-650394. In conclusion, vasopressin stimulates expression of ORAI1/STIM1, thus augmenting store-operated Ca2+ entry and osteogenic signalling. In HAoSMCs, vasopressin (VP) upregulates Ca2+ channel ORAI1 and its activator STIM1. VP upregulates store-operated Ca2+ entry (SOCE) and osteogenic signalling (OS). VP-induced SOCE, OS and Ca2+-deposition are disrupted by ORAI1 inhibitor MRS1845. VP-induced SOCE, OS and Ca2+-deposition are disrupted by SGK1 blocker GSK-650394. KEY MESSAGES: • In HAoSMCs, vasopressin (VP) upregulates Ca2+ channel ORAI1 and its activator STIM1. • VP upregulates store-operated Ca2+ entry (SOCE) and osteogenic signalling (OS). • VP-induced SOCE, OS and Ca2+-deposition are disrupted by ORAI1 inhibitor MRS1845. • VP-induced SOCE, OS and Ca2+-deposition are disrupted by SGK1 blocker GSK-650394.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína ORAI1/biossíntese , Calcificação Vascular/metabolismo , Vasopressinas/farmacologia , Aorta/citologia , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/fisiologia , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Nitrendipino/análogos & derivados , Nitrendipino/farmacologia , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Osteogênese/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Molécula 1 de Interação Estromal/biossíntese , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/fisiologia , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Calcificação Vascular/prevenção & controle
3.
Cell Physiol Biochem ; 54(2): 252-270, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32176842

RESUMO

BACKGROUND/AIMS: Store-operated Ca2+ entry (SOCE) through plasma membrane Ca2+ channel Orai1 is essential for many cellular processes. SOCE, activated by ER Ca2+ store-depletion, relies on the gating function of STIM1 Orai1-activating region SOAR of the ER-anchored Ca2+-sensing protein STIM1. Electrophysiologically, SOCE is characterized as Ca2+ release-activated Ca2+ current (ICRAC). A major regulatory mechanism that prevents deleterious Ca2+ overload is the slow Ca2+-dependent inactivation (SCDI) of ICRAC. Several studies have suggested a role of Ca2+/calmodulin (Ca2+/CaM) in triggering SCDI. However, a direct contribution of STIM1 in regulating Ca2+/CaM-mediated SCDI of ICRAC is as yet unclear. METHODS: The Ca2+/CaM binding to STIM1 was tested by pulling down recombinant GFP-tagged human STIM1 C-terminal fragments on CaM sepharose beads. STIM1 was knocked out by CRISPR/Cas9 technique in HEK293 cells stably overexpressing human Orai1. Store-operated Ca2+ influx was measured using Fluorometric Imaging Plate Reader and whole-cell patch clamp in cells transfected with STIM1 CaM binding mutants. The involvement of Ca2+/CaM in SCDI was investigated by including recombinant human CaM in patch pipette in electrophysiology. RESULTS: Here we identified residues Leu374/Val375 (H1) and Leu390/Phe391 (H2) within SOAR that serve as hydrophobic anchor sites for Ca2+/CaM binding. The bifunctional H2 site is critical for both Orai1 activation and Ca2+/CaM binding. Single residue mutations of Phe391 to less hydrophobic residues significantly diminished SOCE and ICRAC, independent of Ca2+/CaM. Hence, the role of H2 residues in Ca2+/CaM-mediated SCDI cannot be precisely evaluated. In contrast, the H1 site controls exclusively Ca2+/CaM binding and subsequently SCDI, but not Orai1 activation. V375A but not V375W substitution eliminated SCDI of ICRAC caused by Ca2+/CaM, proving a direct role of STIM1 in coordinating SCDI. CONCLUSION: Taken together, we propose a mechanistic model, wherein binding of Ca2+/CaM to STIM1 hydrophobic anchor residues, H1 and H2, triggers SCDI by disrupting the functional interaction between STIM1 and Orai1. Our findings reveal how STIM1, Orai1, and Ca2+/CaM are functionally coordinated to control ICRAC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/fisiologia , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Sinalização do Cálcio , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Químicos , Modelos Moleculares , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima
4.
J Cell Sci ; 133(5)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31722977

RESUMO

Activation of cellular stresses is associated with inflammation; however, the mechanisms are not well identified. Here, we provide evidence that loss of Ca2+ influx induces endoplasmic reticulum (ER) stress in primary macrophages and in murine macrophage cell line Raw 264.7, in which the unfolded protein response is initiated to modulate cytokine production, thereby activating the immune response. Stressors that initiate the ER stress response block store-dependent Ca2+ entry in macrophages prior to the activation of the unfolded protein response. The endogenous Ca2+ entry channel is dependent on the Orai1-TRPC1-STIM1 complex, and the presence of ER stressors decreased expression of TRPC1, Orai1 and STIM1. Additionally, blocking Ca2+ entry with SKF96365 also induced ER stress, promoted cytokine production, activation of autophagy, increased caspase activation and induced apoptosis. Furthermore, ER stress inducers inhibited cell cycle progression, promoted the inflammatory M1 phenotype, and increased phagocytosis. Mechanistically, restoration of Orai1-STIM1 expression inhibited the ER stress-mediated loss of Ca2+ entry that prevents ER stress and inhibits cytokine production, and thus induced cell survival. These results suggest an unequivocal role of Ca2+ entry in modulating ER stress and in the induction of inflammation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Macrófagos/imunologia , Canais de Cátion TRPC/fisiologia , Animais , Membrana Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1/genética , Proteína ORAI1/fisiologia , Células RAW 264.7 , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/fisiologia , Canais de Cátion TRPC/genética
5.
Med Sci Monit ; 24: 9413-9423, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30589833

RESUMO

BACKGROUND Increased endothelial permeability is involved in ventilator-induced lung injury (VILI). Stim1/Orai1 mediates store-operated Ca2+ activation, which modulates endothelial permeability. However, the underlying mechanisms of the Stim1/Orai1 pathway in VILI are poorly understood. MATERIAL AND METHODS Wistar rats were exposed to low tidal volume (7 mL/kg) or high tidal volume (40mL/kg) ventilation. Human Lung Microvascular Endothelial Cells (HULEC) were subjected to 8% or 18% cyclic stretching (CS). BTP2 pretreatment was performed. Lung wet/dry weight ratio, histological changes of lung injury, and bronchoalveolar lavage fluid (BALF) protein were measured. Endothelial permeability and intracellular calcium concentration were evaluated in HULECs. Protein expression was determined by Western blotting. RESULTS High tidal volume mechanical ventilation-induced lung injury (such as severe congestion and hemorrhage) and BTP2 pretreatment protected lungs from injury. The expression of Stim1, Orai1, and PKCα, lung wet/dry weight ratio, and BALF protein level significantly increased in the high tidal volume group compared to the control group and low tidal volume group. Importantly, BTP2 pretreatment alleviated the above-mentioned effects. Compared with exposure to 8% CS, the protein levels of Stim1, Orai1, and PKCα in HULECs significantly increased after exposure to 18% CS for 4 h, whereas BTP2 pretreatment significantly inhibited the increase (P<0.05). BTP2 pretreatment also suppressed increase of endothelial permeability and the intracellular calcium induced by 18% CS (P<0.05). CONCLUSIONS When exposed to high tidal volume or large-magnitude CS, Stim1 and Orai1 expression are upregulated, which further activates calcium-sensitive PKCα and results in calcium overload, endothelial hyperpermeability, and, finally, lung injury.


Assuntos
Proteínas de Neoplasias/fisiologia , Proteína ORAI1/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Cálcio/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Pulmão/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Permeabilidade , Ratos , Ratos Wistar , Molécula 1 de Interação Estromal/metabolismo , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
6.
PLoS Biol ; 16(11): e2006898, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30444880

RESUMO

The endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecule 1 (STIM1) and STIM2, which connect ER Ca2+ depletion with extracellular Ca2+ influx, are crucial for the maintenance of Ca2+ homeostasis in mammalian cells. Despite the recent progress in unraveling the role of STIM2 in Ca2+ signaling, the mechanistic underpinnings of its activation remain underexplored. We use an engineering approach to direct ER-resident STIMs to the plasma membrane (PM) while maintaining their correct membrane topology, as well as Förster resonance energy transfer (FRET) sensors that enabled in cellulo real-time monitoring of STIM activities. This allowed us to determine the calcium affinities of STIM1 and STIM2 both in cellulo and in situ, explaining the current discrepancies in the literature. We also identified the key structural determinants, especially the corresponding G residue in STIM1, which define the distinct activation dynamics of STIM2. The chimeric E470G mutation could switch STIM2 from a slow and weak Orai channel activator into a fast and potent one like STIM1 and vice versa. The systemic dissection of STIM2 activation by protein engineering sets the stage for the elucidation of the regulation and function of STIM2-mediated signaling in mammals.


Assuntos
Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Células HeLa , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/metabolismo
7.
J Mol Med (Berl) ; 96(10): 1061-1079, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30088035

RESUMO

STIM1 is an endoplasmic reticulum protein with a role in Ca2+ mobilization and signaling. As a sensor of intraluminal Ca2+ levels, STIM1 modulates plasma membrane Ca2+ channels to regulate Ca2+ entry. In neuroblastoma SH-SY5Y cells and in familial Alzheimer's disease patient skin fibroblasts, STIM1 is cleaved at the transmembrane domain by the presenilin-1-associated γ-secretase, leading to dysregulation of Ca2+ homeostasis. In this report, we investigated expression levels of STIM1 in brain tissues (medium frontal gyrus) of pathologically confirmed Alzheimer's disease patients, and observed that STIM1 protein expression level decreased with the progression of neurodegeneration. To study the role of STIM1 in neurodegeneration, a strategy was designed to knock-out the expression of STIM1 gene in the SH-SY5Y neuroblastoma cell line by CRISPR/Cas9-mediated genome editing, as an in vitro model to examine the phenotype of STIM1-deficient neuronal cells. It was proved that, while STIM1 is not required for the differentiation of SH-SY5Y cells, it is absolutely essential for cell survival in differentiating cells. Differentiated STIM1-KO cells showed a significant decrease of mitochondrial respiratory chain complex I activity, mitochondrial inner membrane depolarization, reduced mitochondrial free Ca2+ concentration, and higher levels of senescence as compared with wild-type cells. In parallel, STIM1-KO cells showed a potentiated Ca2+ entry in response to depolarization, which was sensitive to nifedipine, pointing to L-type voltage-operated Ca2+ channels as mediators of the upregulated Ca2+ entry. The stable knocking-down of CACNA1C transcripts restored mitochondrial function, increased mitochondrial Ca2+ levels, and dropped senescence to basal levels, demonstrating the essential role of the upregulation of voltage-operated Ca2+ entry through Cav1.2 channels in STIM1-deficient SH-SY5Y cell death. KEY MESSAGES: STIM1 protein expression decreases with the progression of neurodegeneration in Alzheimer's disease. STIM1 is essential for cell viability in differentiated SH-SY5Y cells. STIM1 deficiency triggers voltage-regulated Ca2+ entry-dependent cell death. Mitochondrial dysfunction and senescence are features of STIM1-deficient differentiated cells.


Assuntos
Doença de Alzheimer/genética , Canais de Cálcio Tipo L/fisiologia , Cálcio/fisiologia , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Idoso , Idoso de 80 Anos ou mais , Morte Celular , Linhagem Celular Tumoral , Humanos , Córtex Pré-Frontal/fisiologia
8.
Cancer Sci ; 109(9): 2792-2800, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29957833

RESUMO

Imatinib has revolutionized the treatment of gastrointestinal stromal tumors (GIST); however, primary and secondary resistance to imatinib is still a major cause of treatment failure. Multiple mechanisms are involved in this progression. In the present study, we reported a novel mechanism for the acquired resistance to imatinib, which was induced by enhanced Ca2+ influx via stromal-interacting molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE). We found that the STIM1 expression level was related to the acquired resistance to imatinib in our studied cohort. The function of STIM1 in imatinib-resistant GIST cells was also confirmed both in vivo and in vitro. The results showed that STIM1 overexpression contributed to SOCE and drug response in imatinib-sensitive GIST cells. Blockage of SOCE by STIM1 knockdown suppressed the proliferation of imatinib-resistant GIST cell lines and xenografts. In addition, STIM1-mediated SOCE exerted an antiapoptotic effect via the MEK/ERK pathway. The results from this study provide a basis for further research into potential novel therapeutic strategies in acquired imatinib-resistant GIST.


Assuntos
Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Mesilato de Imatinib/uso terapêutico , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Molécula 1 de Interação Estromal/antagonistas & inibidores
9.
Cell Calcium ; 73: 88-94, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698850

RESUMO

Stromal interaction molecule (STIM)-1 and -2 are multi-domain, single-pass transmembrane proteins involved in sensing changes in compartmentalized calcium (Ca2+) levels and transducing this cellular signal to Orai1 channel proteins. Our understanding of the molecular mechanisms underlying STIM signaling has been dramatically improved through available X-ray crystal and solution NMR structures. This high-resolution structural data has revealed that intricate intramolecular and intermolecular protein-protein interactions are involved in converting STIMs from the quiescent to activation-competent states. This review article summarizes the current high resolution structural data on specific EF-hand, sterile α motif and coiled-coil interactions which drive STIM function in the activation of Orai1 channels. Further, the work discusses the effects of post-translational modifications on the structure and function of STIMs. Future structural studies on larger STIM:Orai complexes will be critical to fully defining the molecular bases for STIM function and how post-translational modifications influence these mechanisms.


Assuntos
Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/fisiologia , Molécula 2 de Interação Estromal/química , Molécula 2 de Interação Estromal/fisiologia , Animais , Citosol/fisiologia , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Zhonghua Xin Xue Guan Bing Za Zhi ; 45(11): 978-984, 2017 Nov 24.
Artigo em Chinês | MEDLINE | ID: mdl-29166726

RESUMO

Objective: To investigate the interaction of Ca(2+) protein TRPC1 and STIM1 in extracellular Ca(2+) -sensing receptor (CaR)-induced extracellular Ca(2+) influx and the production of nitric oxide (NO). Methods: Human umbilical vein endothelial cells (HUVECs) were cultured and incubated with CaR agonist spermine (activating store-operates cation channels (SOC) and receptor-operated channels (ROC)), CaR negative allosteric modulator Calhex231 (blocking SOC, activating ROC) and ROC analogue TPA (activating ROC, blocking SOC), protein kinase C (PKC) inhibitor Ro31-8220, PKCs and PKCµ inhibitor Go6967(activate SOC, blocking ROC), respectively. The interaction of TRPC1 and STIM1 was determined using the immunofluorescence methods. The interaction between TRPC1 and STIM1 were examined by Co-immuno precipitation. The HUVECs were divided into: TRPC1 and STIM1 short hairpin RNA group (shTRPC1+ shSTIM1 group), vehicle-TRPC1+ vehicle-STIM1 group and control group. The cells were incubated with four different treatments under the action of above mentioned interventions, intracellular Ca(2+) concentration ([Ca(2+) ](i)) was detected using the fluorescence Ca(2+) indicator Fura-2/AM, the production of NO was determined by DAF-FM. Results: (1) The expression of TRPC1 and STIM1 proteins levels in HUVECs: Under the confocal microscope, TRPC1 and STIM1 protein expression showed masculine gender, both located in cytoplasm in the normal control group. Post incubation with Calhex231+ TPA, Ro31-8220 and Go6967, TRPC1 and STIM1 positioned in cytoplasm was significantly reduced, and the combined TRPC1 and STIM1 was also significantly reduced. (2) The interaction of TRPC1 and STIM1 in HUVECs: The relative ratios of Calhex231+ TPA+ Spermine+ Ca(2+) group, Ro31-8220+ Spermine+ Ca(2+) group and Go6976+ Spermine+ Ca(2+) group STIM1/TRPC1 and TRPC1/STIM1 were as follows: (25.98±2.17)% and (44.10±4.01)%, (20.85±1.01)% and (46.31±3.47)%, (23.88±2.05)% and (39.65±2.91)%, which were significantly lower than those in the control group (100.00±4.66)% and (100.00±6.40)% and in the Spermine+ Ca(2+) group (106.04±2.45)% and (107.78±2.66)% (all P<0.05). (3) The influence of joint TRPC1 and STIM1 transfection to four different drugs treated HUVECs on [Ca(2+) ](i) and NO generation: The changes of two excitation fluorescence intensity ratio and NO net fluorescence intensity values were consistent, [Ca(2+) ](i) and NO net fluorescence intensity values were significantly lower in the experimental group than the control group and the vehicle group (all P<0.05), while which were similar between the vehicle group and control group (all P>0.05). Conclusions: Our results indicate that TRPC1 and STIM1 jointly regulate CaR-mediated Ca(2+) influx and nitric oxide generation in HUVECs in the form of binary complex.


Assuntos
Cálcio/metabolismo , Proteínas de Neoplasias/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Canais de Cátion TRPC/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Indóis , Óxido Nítrico , Transfecção
11.
Hum Cell ; 30(3): 216-225, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28326487

RESUMO

Osteosarcoma is the most common primary malignant bone tumor. Although cisplatin is the primary chemotherapy used in osteosarcoma treatment, the cisplatin resistance remains a big challenge for improving overall survival. The store-operated calcium (Ca2+) entry (SOCE) and its major mediator Stim1 have been shown to be implicated in a number of pathological processes typical for cancer. In this study, we showed that Stim1 expression was significantly increased in chemo-resistant osteosarcoma tissues compared with chemo-sensitivity tissues. Patients with Sitm1 expression exhibited poorer overall survival than Stim1-negative patients. Moreover, un-regulation of Stim1 expression and SOCE were also observed in cisplatin-resistant MG63/CDDP cells compared with their parental cells. Cisplatin treatment obviously reduced Stim1 expression and SOCE in cisplatin-sensitivity MG63 cells, but had no effects on MG63/CDDP cells. In addition, cisplatin resulted in a more pronounced increase of endoplasmic reticulum (ER) stress in MG63 cells than in their resistant variants, which was evidenced by the activation of molecular markers of ER stress, GRP78, CHOP and ATF4. Knockdown of Stim1 using siRNA remarkably enhanced cisplatin-induced apoptosis and ER stress in MG63/CDDP cells, thereby sensitizing cancer cells to cisplatin. On the other hand, overexpression of Stim1 markedly reversed apoptosis and ER stress following cisplatin treatment. Taken together, these results demonstrate that Stim1 as well as Ca2+ entry contributes cisplatin resistance via inhibition of ER stress-mediated apoptosis, and provide important clues to the mechanisms involved in cisplatin resistance for osteosarcoma treatment. Stim1 represents as a target of cisplatin and blockade of Stim1-mediated Ca2+ entry may be a useful strategy to improve the efficacy of cisplatin to treat osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Molécula 1 de Interação Estromal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica , Estudos de Associação Genética , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/fisiologia , Regulação para Cima
12.
J Physiol ; 595(10): 3165-3180, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28130783

RESUMO

KEY POINTS: Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7-/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca2+ levels at rest. ABSTRACT: The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca2+ concentration in resting cells, and for the refilling of Ca2+ stores after a Ca2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca2+ homeostasis.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Linfócitos B/fisiologia , Linhagem Celular Tumoral , Galinhas , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/genética , Ratos , Molécula 1 de Interação Estromal/fisiologia , Molécula 2 de Interação Estromal/fisiologia , Canais de Cátion TRPM/genética
13.
J Biol Chem ; 292(6): 2266-2277, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28003364

RESUMO

Stromal interaction molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca2+-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting ß-cells is unresolved. We report that lowering expression of STIM1, the gene that encodes STIM1, in insulin-secreting MIN6 ß-cells with RNA interference inhibits SOCE and ATP-sensitive K+ (KATP) channel activation. The effects of STIM1 knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human STIM1 Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the KATP channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and KATP channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca2+ signaling events in ß-cells.


Assuntos
Canais de Cálcio/fisiologia , Ilhotas Pancreáticas/metabolismo , Canais KATP/fisiologia , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Animais , Sinalização do Cálcio , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Transporte de Íons , Camundongos , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética
14.
J Physiol ; 595(10): 3085-3095, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27753099

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels play an essential role in the immune system. The pore-forming subunit, Orai1, is an important pharmacological target. Here, we summarize the recent discoveries on the structure-function relationship of Orai1, as well as its interaction with the native channel opener STIM1 and chemical modulator 2-aminoethoxydiphenyl borate (2-APB). We first introduce the critical structural elements of Orai1, which include a Ca2+ accumulating region, ion selectivity filter, hydrophobic centre, basic region, extended transmembrane Orai1 N-terminal (ETON) region, transmembrane (TM) regions 2 and 3, P245 bend, 263 SHK265 hinge linker and L273-L276 hydrophobic patch. We then hypothesize the possible mechanisms by which STIM1 triggers the conformational transitions of TM regions and exquisitely shapes the ion conduction pathway during generation of the CRAC current (Icrac ) with high Ca2+ selectivity. Finally, we propose mechanisms by which 2-APB modulates Icrac . On the STIM1-activated Orai1 channel, a low dose of 2-APB acts directly, dilating its extremely narrow pore diameter from 3.8 to 4.6 Å, increasing its unitary channel conductance, and potentiating the Icrac . Further elucidation of the structure of the opened CRAC channel and a better understanding of structure-function relationship will benefit the future development of novel immune modulators.


Assuntos
Compostos de Boro/farmacologia , Proteínas de Neoplasias/fisiologia , Proteína ORAI1/química , Proteína ORAI1/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos
15.
Metallomics ; 8(12): 1273-1282, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27868128

RESUMO

Hexavalent chromium [Cr(vi)] is a potent cytotoxin and carcinogen. In recent years, drinking water contamination with Cr(vi) has become a worldwide problem of significant public health importance, thus much attention has been paid to the investigation of Cr(vi)-induced hepatotoxicity. The concentration of intracellular calcium ions ([Ca2+]i) was found to be increased after Cr(vi) exposure, but the exact underlying mechanisms involved in the Ca2+ homeostasis imbalance remain poorly characterized. In the present study, by utilizing the antagonist of store-operated calcium channels (SOCCs) 2-aminoethoxydiphenyl borate (2-APB), small interfering RNA against stromal interaction molecule 1 (si-STIM1) and antioxidant N-acetylcysteine (NAC), we found that Cr(vi) induces [Ca2+]i increase, cell viability loss and transaminase (AST/ALT) leakage, and that these could be suppressed by both 2-APB and si-STIM1. NAC significantly alleviated Cr(vi)-induced up-regulation of STIM1, phosphorylated-extracellular-signal-regulated kinases 1 and 2 (p-ERK1/2), ERK1/2 and nuclear factor κB (NF-κB). By utilizing the ERK inhibitor U0126 and the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC), we confirmed that STIM1 can be regulated by ERK and NF-κB. Thus we concluded that STIM1 plays a role in the Cr(vi)-induced [Ca2+]i increase and cell injury. Our current data provide new insights into the mechanisms of STIM1 function in Cr(vi)-induced hepatotoxicity, and may provide experimental clues for the prevention and treatment of liver diseases in the occupational population exposed to Cr(vi).


Assuntos
Cálcio/metabolismo , Cromo/toxicidade , Hepatócitos/efeitos dos fármacos , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Acetilcisteína/farmacologia , Linhagem Celular Transformada , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Fosforilação , Molécula 1 de Interação Estromal/genética
16.
Oncotarget ; 7(52): 86584-86593, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27863410

RESUMO

This study aimed to address the potential role of STIM1 (stromal interaction molecule 1) in lung tumorigenesis. Colony formation in soft agar assay and tumorigenicity in nude mice assay were conducted. Western blot, immunohistochemistry and quantitative real-time polymerase chain reaction were used to measure the STIM1 expression. The distribution of cell cycle was detected by flow cytometry assay. Our results showed that the expression of STIM1 mRNA was significantly higher in human lung tumors than that in adjacent non-neoplastic lung tissues. Significantly increased expression of STIM1 mRNA and protein was observed in 16HBE-benzo(a)pyrene (BaP) cells and in BaP-treated mice lung tissues compared with 16HBE-control cells and the control group, respectively. Silencing STIM1 inhibited the proliferation and colony formation of A549 cells in in vitro experiments, attenuated the growth of tumor xenografts of A549 cells in in vivo experiments and induced the arrest of cell cycle in the G1 phase. The markedly decreased expression of cyclin D1 protein was observed in A549-shRNA-STIM1 cells as compared to A549-shRNA-control cells. The markedly increased expression of p21 protein was observed in A549-shRNA-STIM1 cells as compared to A549-shRNA-control cells. The expression levels of ß-catenin and TGIF proteins were lower in A549-shRNA-STIM1 cells than those in A549-shRNA-control cells. In conclusion, this study indicated that the elevated expression of STIM1 might be involved in lung tumorigenesis.


Assuntos
Neoplasias Pulmonares/etiologia , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/análise , Animais , Benzo(a)pireno/toxicidade , Carcinogênese , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Neoplasias Pulmonares/química , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/análise , Molécula 1 de Interação Estromal/análise , beta Catenina/análise
17.
J Physiol ; 594(11): 2825-35, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864956

RESUMO

Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.


Assuntos
Melanócitos/metabolismo , Melanoma/metabolismo , Proteína ORAI1/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Animais , Humanos , Melanócitos/patologia , Melanoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA