Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.254
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39408846

RESUMO

Hematopoietic stem cells (HSCs) reside in specific microenvironments that facilitate their regulation through both internal mechanisms and external cues. Bone marrow endothelial cells (BMECs), which are found in one of these microenvironments, play a vital role in controlling the self-renewal and differentiation of HSCs during hematological stress. We previously showed that 27-hydroxycholesterol (27HC) administration of exogenous 27HC negatively affected the population of HSCs and progenitor cells by increasing the reactive oxygen species levels in the bone marrow. However, the effect of 27HC on BMECs is unclear. To determine the function of 27HC in BMECs, we employed magnetic-activated cell sorting to isolate CD31+ BMECs and CD31- cells. We demonstrated the effect of 27HC on CD31+ BMECs and HSCs. Treatment with exogenous 27HC led to a decrease in the number of BMECs and reduced the expression of adhesion molecules that are crucial for maintaining HSCs. Our results demonstrate that BMECs are sensitively affected by 27HC and are crucial for HSC survival.


Assuntos
Células da Medula Óssea , Células Endoteliais , Células-Tronco Hematopoéticas , Hidroxicolesteróis , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Diferenciação Celular/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337249

RESUMO

Infantile hemangiomas (IHs) are benign vascular neoplasms of childhood (prevalence 5-10%) due to the abnormal proliferation of endothelial cells. IHs are characterized by a peculiar natural life cycle enclosing three phases: proliferative (≤12 months), involuting (≥13 months), and involuted (up to 4-7 years). The mechanisms underlying this neoplastic disease still remain uncovered. Twenty-seven IH tissue specimens (15 proliferative and 12 involuting) were subjected to hematoxylin and eosin staining and a panel of diagnostic markers by immunohistochemistry. WT1, nestin, CD133, and CD26 were also analyzed. Moreover, CD31pos/CD26pos proliferative hemangioma-derived endothelial cells (Hem-ECs) were freshly isolated, exposed to vildagliptin (a DPP-IV/CD26 inhibitor), and tested for cell survival and proliferation by MTT assay, FACS analysis, and Western blot assay. All IHs displayed positive CD31, GLUT1, WT1, and nestin immunostaining but were negative for D2-40. Increased endothelial cell proliferation in IH samples was documented by ki67 labeling. All endothelia of proliferative IHs were positive for CD26 (100%), while only 10 expressed CD133 (66.6%). Surprisingly, seven involuting IH samples (58.3%) exhibited coexisting proliferative and involuting aspects in the same hemangiomatous lesion. Importantly, proliferative areas were characterized by CD26 immunolabeling, at variance from involuting sites that were always CD26 negative. Finally, in vitro DPP-IV pharmacological inhibition by vildagliptin significantly reduced Hem-ECs proliferation through the modulation of ki67 and induced cell cycle arrest associated with the upregulation of p21 protein expression. Taken together, our findings suggest that CD26 might represent a reliable biomarker to detect proliferative sites and unveil non-regressive IHs after a 12-month life cycle.


Assuntos
Antígeno AC133 , Proliferação de Células , Dipeptidil Peptidase 4 , Hemangioma , Vildagliptina , Humanos , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Hemangioma/metabolismo , Hemangioma/patologia , Lactente , Vildagliptina/farmacologia , Feminino , Masculino , Antígeno AC133/metabolismo , Pré-Escolar , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Nestina/metabolismo , Nestina/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Criança , Proteínas WT1/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Antígeno Ki-67/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Recém-Nascido
3.
Zhonghua Bing Li Xue Za Zhi ; 53(9): 905-909, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39231742

RESUMO

Objective: To investigate the clinicopathological features and differential diagnosis of breast angiomatosis. Methods: Six cases of breast angiomatosis diagnosed at the Department of Pathology, the Seventh Medical Center, People's Liberation Army General Hospital and the Department of Pathology, Dongzhimen Hospital, Beijing University of Chinese Medicine from January 2011 to December 2023 were evaluated and reviewed. Results: All patients were female with an average age of 46 years at presentation, ranging from 25 to 62 years. The most common clinical presentation was a palpable unilateral breast mass with diameter ranging from 7 to 14 cm, and the average size was 11 cm. Histologically, all cases were composed of variably-sized ectatic, thin-walled blood vessels with minimal to no apparent smooth muscle, lined by flat normochromic endothelium without atypia, and diffusely infiltrating the breast stroma. Where present, the lesional vessels infiltrated between and around terminal duct lobular units but not into individual intralobular stroma. Immunohistochemical staining for CD31, CD34, Factor Ⅷ, Fli-1 and D2-40 revealed positive expression in vascular and/or lymphatic endothelial cells. Additionally, the Ki-67 proliferation index was found to be less than 1%. Conclusions: Angiomatosis of the breast is a rare benign vascular lesion. Distinguishing it from low-grade angiosarcoma requires careful consideration of the growth pattern, atypical features, and Ki-67 proliferation index.


Assuntos
Angiomatose , Antígenos CD34 , Neoplasias da Mama , Humanos , Feminino , Angiomatose/patologia , Angiomatose/metabolismo , Pessoa de Meia-Idade , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antígenos CD34/metabolismo , Diagnóstico Diferencial , Mama/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Doenças Mamárias/patologia , Doenças Mamárias/metabolismo , Doenças Mamárias/diagnóstico , Antígeno Ki-67/metabolismo , Imuno-Histoquímica , Fator de von Willebrand/metabolismo , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Anticorpos Monoclonais Murinos
4.
Artigo em Russo | MEDLINE | ID: mdl-39248586

RESUMO

Postmastectomy syndrome (PMS) is a complex neurovascular set of symptoms that develops in most patients after breast cancer (BC) treatment and significantly reduces the quality of life. One of the potential mechanisms of its occurrence is considered to be an endothelial dysfunction. The possible method of reducing manifestation of endothelial dysfunction is systematic aerobic dynamic training. OBJECTIVE: To evaluate the influence of 12-week aerobic dynamic training program of moderate intensity on the endothelial dysfunction laboratory markers and life quality in patients with PMS. MATERIAL AND METHODS: Single-center prospective randomized trial included 40 patients with PMS divided into study (20 patients) and comparative (20 patients) groups, as well as 20 healthy female volunteers. The expression level of soluble intercellular adhesion molecule-1 (ICAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) were evaluated in all participants at baseline by enzyme-linked immunosorbent assay method, and additionally psychological and physical component of health by SF-36 questionnaire were assessed in patients with PMS.Patients of study group received a course of 12-week partially controlled aerobic dynamic training of moderate intensity lasting 45 minutes with frequency equal 5 times per week. Patients with PMS were re-evaluated for ICAM-1 and PECAM-1, as well as for life quality. RESULTS: The group of patients with PMS after BC treatment had increased level of ICAM-1 in long-term period, that may indicate endothelial dysfunction. Statistically significant decrease of endothelial dysfunction laboratory markers was revealed in patients with PMS, who underwent the course of cardiorespiratory training. In the same time, the dynamics of changes in ICAM-1 was higher in the study group than in comparative group. Further, improvement of physical and psychological components of health by SF-36 questionnaire was found. CONCLUSIONS: The program of cardiorespiratory trainings of moderate intensity in patients, who had BC treatment a year ago, decreases intercellular adhesion molecules level that may show an improvement of endothelial dysfunction.


Assuntos
Molécula 1 de Adesão Intercelular , Mastectomia , Humanos , Feminino , Molécula 1 de Adesão Intercelular/sangue , Pessoa de Meia-Idade , Adulto , Molécula-1 de Adesão Celular Endotelial a Plaquetas/sangue , Qualidade de Vida , Estudos Prospectivos , Terapia por Exercício/métodos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/reabilitação
5.
Cells ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39120283

RESUMO

Thoracic aortic aneurysms (TAAs) represent a serious health concern, as they are associated with early aortic dissection and rupture. TAA formation is triggered by genetic conditions, in particular Marfan syndrome (MFS) and bicuspid aortic valve (BAV). During the aneurysmatic process, aortic endothelial cells can undergo endothelial-to-mesenchymal transition (End-MT) with consequent phenotypic and functional alterations. We previously documented that MFS TAA is characterized by miR-632-driven End-MT exacerbation, whereas in BAV aortopathy, the occurrence of this process remains still controversial. We investigated the End-MT process and the underlined regulatory mechanisms in BAV, TAV and MFS TAA tissues. Gene expression and immunohistochemical analysis were performed in order to analyze some important miRNAs and genes characterizing End-MT. We documented that BAV endothelium maintains the expression of the endothelial homeostasis markers, such as ERG, CD31 and miR-126-5p, while it shows lower levels of miR-632 and mesenchymal markers compared with MFS. Interestingly, we also found higher levels of miR-632 in MFS patients' blood. Our findings definitively demonstrate that the End-MT process does not characterize BAV that, among the other TAAs, better maintains the endothelial features. In addition, our results suggest miR-632 as a promising diagnostic/prognostic factor in MFS aortopathy.


Assuntos
Aneurisma da Aorta Torácica , Transição Epitelial-Mesenquimal , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Transição Epitelial-Mesenquimal/genética , Masculino , Feminino , Pessoa de Meia-Idade , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/genética , Doença da Válvula Aórtica Bicúspide/metabolismo , Doença da Válvula Aórtica Bicúspide/patologia , Doença da Válvula Aórtica Bicúspide/genética , Idoso , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adulto , Regulação da Expressão Gênica , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Síndrome de Marfan/metabolismo
6.
Skin Res Technol ; 30(8): e13919, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113612

RESUMO

BACKGROUND: Diabetes mellitus (DM) presents impediment to wound healing. While ultraviolet B (UVB) exposure showed therapeutic potential in various skin conditions, its capacity to mediate diabetic wound healing remains unclear. To investigate the efficacy of UVB on wound healing and its underlying basis. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to the high-fat diet followed by streptozotocin administration to establish the diabetic model. Upon confirmation of diabetes, full-thickness wounds were inflicted and the treatment group received UVB radiation at 50 mJ/cm2 for 5 min every alternate day for 2 weeks. Wound healing rate was then assessed, accompanied by evaluations of blood glucose, lipid profiles, CD31 expression, and concentrations of ghrelin and leptin. Concurrently, in vitro studies were executed to evaluate the protective role of ghrelin on human umbilical vein endothelial cells (HUVEC) under high glucose (HG) conditions. RESULTS: Post UVB exposure, there was a marked acceleration in wound healing in DM mice without alterations in hyperglycemia and lipid profiles. Compared to non-UVB-exposed mice, the UVB group showed enhanced angiogenesis manifested by a surge in CD31 expression. This trend appeared to be in harmony with the elevated ghrelin levels. In vitro experiments indicated that ghrelin significantly enhanced the migratory pace and angiogenic properties of HUVEC under HG-induced stress, potentially mediated by an upregulation in vascular endothelial growth factor expression. CONCLUSION: UVB exposure bolstered wound healing in diabetic mice, plausibly mediated through augmented angiogenesis induced by ghrelin secretion. Such findings underscore the vast potential of UVB-induced ghrelin in therapeutic strategies targeting diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Grelina , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , Cicatrização , Animais , Humanos , Masculino , Camundongos , Glicemia/metabolismo , Grelina/metabolismo , Grelina/efeitos da radiação , Leptina/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Terapia Ultravioleta/métodos , Cicatrização/efeitos da radiação
7.
Cell Mol Life Sci ; 81(1): 344, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133273

RESUMO

Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.


Assuntos
Diferenciação Celular , Células Endoteliais , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Neovascularização Fisiológica , Osteogênese , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/genética , Neovascularização Fisiológica/genética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Camundongos , Humanos , Células Cultivadas , Transdução de Sinais , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Reprogramação Metabólica , Angiogênese
9.
Arkh Patol ; 86(4): 5-12, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39073536

RESUMO

Differential diagnosis of atypical parathyroid tumors (APT) and parathyroid carcinomas (PC) is important in determining further management and prognosis. Morphologic diagnosis is sometimes difficult, in which case it is supplemented by immunohistochemical (IHC) examination. OBJECTIVE: Studying the role of IHC analysis in the differential diagnosis of APT and PC. MATERIAL AND METHODS: The study included 44 patients with morphologic diagnosis of the APT established after surgical treatment for primary hyperparathyroidism on the basis of Endocrinology Research Centre during 2018-2023. All cases underwent IHC examination with evaluation of CD31/CD34 and parathormone (PTH) expression for identification of vascular invasion, Ki-67, parafibromin. RESULTS: According to the results of IHC analysis in 8/44 patients (18.2%) the diagnosis of APT was revised in favor of the PC: in 7 of them vascular invasion was detected; in 1 patient the additional series of slices in the surrounding fatty tissue revealed foci of tumor growth, confirmed by positive reaction with antibodies to PTH. According to IHC results, the material was divided into 2 groups: APT and PC. There were no differences in clinical and morphological characteristics, Ki-67% level and parafibromin expression between the groups. CONCLUSION: Assessment of clinical and laboratory-instrumental data at the preoperative stage does not allow differentiating APT from PC. In case of APT diagnosis and detection of suspicious morphological features, it is necessary to perform IHC examination to exclude PC.


Assuntos
Imuno-Histoquímica , Neoplasias das Paratireoides , Humanos , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/patologia , Neoplasias das Paratireoides/metabolismo , Diagnóstico Diferencial , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Antígeno Ki-67/metabolismo , Hormônio Paratireóideo/metabolismo , Glândulas Paratireoides/patologia , Glândulas Paratireoides/metabolismo , Antígenos CD34/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas
10.
Ann Vasc Surg ; 108: 419-425, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39025210

RESUMO

BACKGROUND: Kasabach-Merritt phenomenon (KMP) is characterized by profound thrombocytopenia and consumptive coagulopathy associated with vascular tumors, such as Kaposiform hemangioendothelioma (KHE). The pathogenesis of KMP remains unclear and its treatment is challenging. In this study, we tried to establish an animal model of KMP, which may facilitate the research on the etiology and new treatment. METHODS: A fresh sample of KHE from a one-month-old female infant with KMP was scissored into pieces and transplanted subcutaneously into the back of the nude mice. Blood routine examination was performed before the transplantation and 2, 4, 8, 12, and 16 weeks after the transplantation. Transplanted tumors were harvested 2, 4, 8, 12, and 16 weeks after the transplantation. H-E staining, immunohistochemistry staining of cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), and ultrastructural observation were performed on the plugs. RESULTS: Blood test showed a significant decrease in the number of platelets 2 weeks after transplantation. The number of platelets showed an overall trend of recovery from 2 weeks despite a slight decrease at 12 weeks after transplantation. There was no significant difference in the platelet count at 16 weeks after transplantation compared with the original state. H-E staining showed abundant irregular blood sinuses in the transplanted tumors with plenty of blood cells 2 weeks after the transplantation. 4, 8, and 12 weeks after transplantation, the density of blood sinuses decreased progressively. 16 weeks after transplantation, the plugs involuted into fibrous tissue. Immunohistochemistry staining showed the positive expression of CD31 in the endothelial cells and α-SMA in the perivascular cells. Ultrastructural observation also showed the features of KHE and progressive evolution of the tumors. CONCLUSIONS: We successfully established an experimental model of KMP by the xenograft of KHE in nude mice, which manifested profound thrombocytopenia and typical pathological structure.


Assuntos
Actinas , Modelos Animais de Doenças , Hemangioendotelioma , Síndrome de Kasabach-Merritt , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Sarcoma de Kaposi , Animais , Síndrome de Kasabach-Merritt/patologia , Hemangioendotelioma/patologia , Feminino , Sarcoma de Kaposi/patologia , Fatores de Tempo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Actinas/metabolismo , Humanos , Contagem de Plaquetas , Xenoenxertos , Camundongos Endogâmicos BALB C
11.
Cancer Lett ; 598: 217099, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38971491

RESUMO

An optimum safety excision margin (EM) delineated by precise demarcation of field cancerization along with reliable biomarkers that enable predicting and timely evaluating patients' response to immunotherapy significantly impact effective management of melanoma. In this study, optimized biphasic "immunofluorescence staining integrated with fluorescence insitu hybridization" (iFISH) was conducted along the diagnosis-metastasis-treatment-cellular MRD axis to longitudinally co-detect a full spectrum of intact CD31- aneuploid tumor cells (TCs), CD31+ aneuploid tumor endothelial cells (TECs), viable and necrotic circulating TCs (CTCs) and circulating TECs (CTECs) expressing PD-L1, Ki67, p16 and Vimentin in unsliced specimens of the resected primary tumor, EM, dissected sentinel lymph nodes (SLNs) and peripheral blood in an early-stage melanoma patient. Numerous PD-L1+ aneuploid TCs and TECs were detected at the conventional safety EM (2 cm), quantitatively indicating the existence of a field cancerized EM for the first time. Contrary to highly heterogeneous PD-L1 expression and degrees of Chr8 aneuploidy in TCs and TECs in the primary lesions as well as CTCs and CTECs in peripheral blood, almost all TCs and TECs in SLNs and EM were homogeneously PD-L1+ haploid cells. Dynamic monitoring and cellular MRD assessment revealed that, in contrast to PD-L1+ CTCs being responsive to the immune checkpoint inhibitor (ICI-anti-PD-1), multiploid (≥pentasomy 8) PD-L1+ and Ki67+ CTECs were respectively resistant to ICI-sensitized T cells. In therapeutically stressed lymphatic and hematogenous metastatic cascades, stratified phenotypic and karyotypic profiling of iFISH tissue and liquid biopsied TCs, TECs, CTCs and CTECs in future large-cohort studies will enable appropriate re-specification of the optimal safety EM and distribution mapping of in-depth characterized, subcategorized target cells to help illustrate their metastatic relevance, ultimately improving risk stratification and clinical intervention of tumor progression, metastases, therapy resistance and cancer relapse.


Assuntos
Aneuploidia , Células Endoteliais , Margens de Excisão , Melanoma , Humanos , Melanoma/patologia , Melanoma/imunologia , Melanoma/genética , Melanoma/terapia , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Imunoterapia/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Hibridização in Situ Fluorescente , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Pessoa de Meia-Idade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Feminino
12.
Anesth Analg ; 139(2): 385-396, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008867

RESUMO

BACKGROUND: Currently, clinical indicators for evaluating endothelial permeability in sepsis are unavailable. Endothelium-derived extracellular vesicles (EDEVs) are emerging as biomarkers of endothelial injury. Platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial (VE)-cadherin are constitutively expressed endothelial intercellular adhesion molecules that regulate intercellular adhesion and permeability. Herein, we investigated the possible association between EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) and endothelial permeability and sepsis severity. METHODS: Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor alpha (TNF-α) directly or after pretreatment with permeability-modifying reagents such as angiopoietin-1, prostacyclin, or vascular endothelial growth factor (VEGF) to alter TNF-α-induced endothelial hyperpermeability. Endothelial permeability was measured using the dextran assay or transendothelial electrical resistance. Additionally, a prospective cross-sectional observational study was conducted to analyze circulating EDEV levels in patients with sepsis. EDEVs were examined in HUVEC culture supernatants or patient plasma (nonsepsis, n = 30; sepsis, n = 30; septic shock, n = 42) using flow cytometry. The Wilcoxon rank-sum test was used for comparisons between 2 groups. Comparisons among 3 or more groups were performed using the Steel-Dwass test. Spearman's test was used for correlation analysis. Statistical significance was set at P < .05. RESULTS: TNF-α stimulation of HUVECs significantly increased EDEV release and endothelial permeability. Pretreatment with angiopoietin-1 or prostacyclin suppressed the TNF-α-induced increase in endothelial permeability and inhibited the release of PECAM+ and VE-cadherin+ EDEVs. In contrast, pretreatment with VEGF increased TNF-α-induced endothelial permeability and the release of PECAM+ and VE-cadherin+ EDEVs. However, pretreatment with permeability-modifying reagents did not affect the release of EDEVs expressing inflammatory stimulus-inducible endothelial adhesion molecules such as E-selectin, intracellular adhesion molecule-1, or vascular cell adhesion molecule-1. The number of PECAM+ EDEVs on admission in the septic-shock group (232 [124, 590]/µL) was significantly higher (P = .043) than that in the sepsis group (138 [77,267]/µL), with an average treatment effect of 98/µL (95% confidence interval [CI], 2-270/µL), and the number of VE-cadherin+ EDEVs in the septic-shock group (173 [76,339]/µL) was also significantly higher (P = .004) than that in the sepsis group (81 [42,159]/µL), with an average treatment effect (ATE) of 79/µL (95% CI, 19-171/µL); these EDEV levels remained elevated until day 5. CONCLUSIONS: EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) may reflect increased endothelial permeability and could be valuable diagnostic and prognostic markers for sepsis.


Assuntos
Antígenos CD , Caderinas , Permeabilidade Capilar , Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , Sepse , Índice de Gravidade de Doença , Humanos , Vesículas Extracelulares/metabolismo , Sepse/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Estudos Prospectivos , Antígenos CD/metabolismo , Feminino , Pessoa de Meia-Idade , Caderinas/metabolismo , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Estudos Transversais , Células Cultivadas , Angiopoietina-1/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo
13.
Phytomedicine ; 132: 155891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059093

RESUMO

BACKGROUD: Arsenic trioxide (ATO), the first-line drug in treating acute premyelogenous leukemia, has the profound side effect of inducing endothelial mesenchymal transition (EndMT) and causing cardiac fibrosis. Diosgenin (DIO), a pharmaceutical compound found in Paris polyphylla, exhibits promising potential in safeguarding cardiovascular health by mitigating EndMT. PURPOSE: This study aims to explore the role and mechanism of DIO in ATO-induced myocardial fibrosis to provide a novel therapeutic agent for ATO-induced cardiac fibrosis. METHODS: Wistar rats were given DIO by gavage and ATO by tail vein. Cardiac function and fibrosis were evaluated by echocardiography and Masson's trichrome staining in rats. Human aortic endothelial cells (HAECs) were utilized to analyze ATO-induced EndMT in vitro. The cytoskeleton of HAECs was visualized using F-actin staining to observe cell morphology, while Dil-Ac-LDL staining was employed to assess cell functionality. EndMT-related factors (CD31 and α-SMA), glucocorticoid receptor (GR) and interleukin-6 (IL-6) were detected by immunofluorescence and Western blot in vivo and in vitro. Furthermore, GR was knocked down by si-GR, and IL-6 was blocked by IL-6 neutralizing antibody to verify their role in the effect of DIO on ATO-induced EndMT in HAECs. RESULTS: DIO exhibited significant efficacy in ATO-induced damage to both cardiac diastolic and systolic function, along with mitigating cardiac fibrosis. Additionally, DIO alleviated the loss of cytoskeletal anisotropy and enhanced the uptake of Dil-Ac-LDL in HAECs. Furthermore, it reversed the ATO-induced downregulation of endothelial-specific markers CD31 and GR, while suppressing the upregulation of mesenchymal markers α-SMA and IL-6, both in vivo and in vitro. Notably, the protective effect of DIO was compromised upon knockdown of GR, which also led to a reversal of DIO-induced IL-6 downregulation. Furthermore, the neutralization of IL-6 with specific antibodies abolished the ATO-induced changes related to EndMT. CONCLUSION: In this study, we clarified the protective effect of DIO on ATO-induced myocardial fibrosis against EndMT via the GR/IL-6 axis for the first time and provided a potential therapeutic agent for preventing heart damage caused by ATO.


Assuntos
Trióxido de Arsênio , Diosgenina , Células Endoteliais , Fibrose , Ratos Wistar , Animais , Fibrose/tratamento farmacológico , Humanos , Masculino , Diosgenina/farmacologia , Diosgenina/análogos & derivados , Células Endoteliais/efeitos dos fármacos , Ratos , Interleucina-6/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Actinas/metabolismo , Miocárdio/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transição Endotélio-Mesênquima
14.
Cell Biochem Biophys ; 82(3): 2237-2248, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38849695

RESUMO

LncRNAs involvement in heart disease, however, the effect of lncRNA prostate cancer-associated transcript 19 (PCAT19) in coronary artery disease (CAD) remains unclear. In the current study, we aimed to verify the role of PCAT19 in CAD. We first investigated the differentially expressed lncRNAs in different Genes Expression Omnibus (GEO) database. We then detected lncRNAs expression in healthy volunteers and acute myocardial infarction (AMI) patients by qRT­PCR. The correlation of PCAT19 and Glucosaminyl (N-Acetyl) Transferase 2 (GCNT2) was analyzed. Human coronary artery endothelial cells (HCAECs) was used to conduct cell hypoxia-reoxygenation (H/R) injury model to imitate AMI injury. CCK8, BrdU, tube formation assay were used to detect cell viability, proliferation, and angiogenesis. Immunofluorescence, western blotting were used to detect ki67, VEGFA, PCNA, CD31, and GCNT2 expression, respectively. We obtained six different lncRNAs from GEO database and identified PCAT19 high expression in AMI patients. PCAT19 was positive correlation to GCNT2. Further experiments presented that PCAT19 knockdown promoted cell viability, proliferation and angiogenesis, GCNT2 knockdown also promoted cell viability, proliferation, and angiogenesis. These results confirmed by the inhibition of Ki67 and VEGFA. Importantly, PCAT19 overexpression suppressed cell proliferation and angiogenesis, these results also confirmed by the inhibition of PCNA and CD31. However, the inhibitory effect of PCAT19 overexpression was reversed by GCNT2 knockdown. Our study indicated that PCAT19 plays an important role in the CAD disease, its effects was related to GCNT2. Our research provides a novel sight for the effect of PCAT19 on CAD.


Assuntos
Proliferação de Células , Doença da Artéria Coronariana , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Sobrevivência Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Masculino , Células Cultivadas , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Interferência de RNA , Neovascularização Patológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Angiogênese
15.
Zhen Ci Yan Jiu ; 49(6): 577-584, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38897801

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) stimulation of "Zusanli"(ST36) and"Xuehai"(SP10) on the angiogenesis of the local injured skin tissue in mice with psoriasis, so as to explore its mechanisms underlying improvement of psoriasis-induced skin lesions. METHODS: A total of 24 female BALB/c mice aged 6-8 weeks were randomly divided into control, model and EA groups, with 8 mice in each group. The psoriasis-like skin lesion model was established by application of 5% imiquimod (IMQ) cream to the mice's back skin, 62.5 mg/d, for 7 days after local depilation, and the mice of the control group received local application of an equal amount of petroleum jelly once a day for 7 days. EA stimulation (2 Hz/100 Hz) was applied to ST36 and SP10 for 30 min, once daily for 7 consecutive days. Photos of the topical injured skin at the back were taken every day, and the severity of psoriasis lesions (psoriasis area and severity index ï¼»PASIï¼½) was scaled. Following H.E. staining, the morphological changes in the injured skin tissue were observed with epidermal thickness analyzed, and the Masson staining was used to observe the proportion of collagen fibers in the injured skin tissues. Immunohistochemical method was used to detect the expression of microvascular markers CD31 and vascular endothelial growth factor (VEGF) and the microvascular density (MVD) was calculated. Western blot was used to detect the expression levels of CD31, VEGF proteins and mitogen activated protein kinases (MAPK) signaling pathway related proteins p38, phosphorylated p38 (p-p38), extracellular regulated protein kinases (ERK), p-ERK, c-Jun N-terminal kinase (JNK) and p-JNK in the injured skin tissue. RESULTS: Compared with the control group, the mice in the model group showed an evident increase in the erythema score, scales score, skin thickening score and PASI score, epidermal thickness, proportion of the collagen fibers, MVD value of CD31 and VEGF, and expression levels of CD31 and VEGF proteins, and p-p38/p38, p-ERK/ERK and p-JNK/JNK ratios in the injured skin tissue (P<0.001, P<0.01). In contrast to the model group, the EA group had a significant decrease in the levels of all the indexes mentioned above (P<0.05, P<0.01, P<0.001). CONCLUSIONS: EA intervention can improve the psoriasis-like skin lesions induced by IMQ in mice, which may be related with its functions in down-regulating the expression of angiogenic related factors CD31 and VEGF proteins and MAPK signaling pathway related proteins in the topical injured skin tissue.


Assuntos
Eletroacupuntura , Camundongos Endogâmicos BALB C , Psoríase , Fator A de Crescimento do Endotélio Vascular , Animais , Psoríase/terapia , Psoríase/metabolismo , Camundongos , Feminino , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Pele/irrigação sanguínea , Pele/metabolismo , Neovascularização Patológica/terapia , Neovascularização Patológica/metabolismo , Modelos Animais de Doenças , Pontos de Acupuntura , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Angiogênese
16.
PLoS One ; 19(5): e0303010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748682

RESUMO

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Assuntos
Retinopatia Diabética , Células Endoteliais , NADPH Oxidase 4 , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Regulação para Cima , Animais , Humanos , Camundongos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Retina/metabolismo , Retina/patologia
17.
Mol Imaging Biol ; 26(4): 714-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760621

RESUMO

PURPOSE: Prostate specific membrane antigen (PSMA) has been studied in human breast cancer (BCa) biopsies, however, lack of data on PSMA expression in mouse models impedes development of PSMA-targeted therapies, particularly in improving breast conserving surgery (BCS) margins. This study aimed to validate and characterize the expression of PSMA in murine BCa models, demonstrating that PSMA can be utilized to improve therapies and imaging techniques. METHODS: Murine triple negative breast cancer 4T1 cells, and human cell lines, MDA-MB-231, MDA-MB-468, implanted into the mammary fat pads of BALB/c mice, were imaged by our PSMA targeted theranostic agent, PSMA-1-Pc413, and tumor to background ratios (TBR) were calculated to validate selective uptake. Immunohistochemistry was used to correlate PSMA expression in relation to CD31, an endothelial cell biomarker highlighting neovasculature. PSMA expression was also quantified by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS: Accumulation of PSMA-1-Pc413 was observed in 4T1 primary tumors and associated metastases. Average TBR of 4T1 tumors were calculated to be greater than 1.5-ratio at which tumor tissues can be distinguished from normal structures-at peak accumulation with the signal intensity in 4T1 tumors comparable to that in high PSMA expressing PC3-pip tumors. Extraction of 4T1 tumors and lung metastases followed by RT-PCR analysis and PSMA-CD31 co-staining shows that PSMA is consistently localized on tumor neovasculature with no expression in tumor cells and surrounding normal tissues. CONCLUSION: The selective uptake of PSMA-1-Pc413 in these cancer tissues as well as the characterization and validation of PSMA expression on neovasculature in this syngeneic 4T1 model emphasizes their potential for advancements in targeted therapies and imaging techniques for BCa. PSMA holds great promise as an oncogenic target for BCa and its associated metastases.


Assuntos
Antígenos de Superfície , Modelos Animais de Doenças , Glutamato Carboxipeptidase II , Camundongos Endogâmicos BALB C , Animais , Feminino , Linhagem Celular Tumoral , Humanos , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Imuno-Histoquímica
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708505

RESUMO

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Assuntos
Dexametasona , Necrose da Cabeça do Fêmur , Glucocorticoides , Animais , Humanos , Camundongos , Angiogênese , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/efeitos adversos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/irrigação sanguínea , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Glucocorticoides/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Periodontol ; 95(7): 662-672, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708919

RESUMO

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.


Assuntos
Neovascularização Fisiológica , Ligamento Periodontal , Fator A de Crescimento do Endotélio Vascular , Humanos , Projetos Piloto , Ligamento Periodontal/citologia , Ligamento Periodontal/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Células-Tronco Mesenquimais , Maxila , Mandíbula , Proliferação de Células , Células-Tronco/fisiologia , Masculino , Diferenciação Celular , Adulto , Feminino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Células Cultivadas , Adulto Jovem
20.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704516

RESUMO

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Assuntos
Dexametasona , Glucocorticoides , Neovascularização Fisiológica , Inibidor 1 de Ativador de Plasminogênio , Animais , Camundongos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Feminino , Glucocorticoides/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Dexametasona/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Proteína Morfogenética Óssea 2/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA