Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.049
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 222, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698420

RESUMO

BACKGROUND: Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS: Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION: TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.


Assuntos
Antígenos de Neoplasias , Biomarcadores Tumorais , Moléculas de Adesão Celular , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Animais , Camundongos , Feminino , Idoso , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/genética , Neoplasias/metabolismo , Masculino , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Adulto , Proliferação de Células , Movimento Celular , Envelhecimento/genética , Proteômica/métodos , Células HeLa , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Regulação para Cima
2.
Bioconjug Chem ; 35(5): 674-681, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695582

RESUMO

Aptamers are widely used molecular recognition tools in targeted therapy, but their ability to effectively penetrate deep into solid tumors remains a significant challenge, leading to suboptimal treatment efficacy. Here, we developed a polyfluoroalkyl (PFA) decoration strategy to enhance aptamer recognition, cell internalization, and solid tumor penetration. Our results indicate that PFA with around 11 fluorine atoms significantly improves aptamer internalization both in vitro and in vivo settings. However, we also observed that the use of PFA tags containing 19 and 23 fluorine atoms on aptamers resulted in nonspecific cell anchoring in control cell lines, affecting the specificity of aptamers. Overall, we found that using a chemical modification strategy could enhance the deep tumor penetration ability of aptamers and validate their effectiveness in vivo. This approach has significant practical applications in targeted drug delivery for cancer treatment.


Assuntos
Aptâmeros de Nucleotídeos , Receptores Proteína Tirosina Quinases , Aptâmeros de Nucleotídeos/química , Humanos , Animais , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Camundongos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos
3.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740744

RESUMO

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias Ovarianas , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Proliferação de Células
4.
J Nucl Med ; 65(Suppl 1): 12S-18S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719240

RESUMO

Nectin cell adhesion molecule 4 (nectin-4) is a transmembrane protein overexpressed on a variety of cancers and plays an important role in oncogenic and metastatic processes. The nectin-4-targeted antibody-drug conjugate enfortumab vedotin has been approved for treating locally advanced or metastatic urothelial cancer, but the efficacy in other types of cancer remains to be explored. The aim of this study was to evaluate the feasibility of nectin-4-targeted PET imaging with 68Ga-N188 as a noninvasive method to quantify membranous nectin-4 expression in multiple tumor types-an approach that may provide insight for patient stratification and treatment selection. Methods: Sixty-two patients with 16 types of cancer underwent head-to-head 68Ga-N188 and 18F-FDG PET/CT imaging for initial staging or detection of recurrence and metastases. Correlation between lesion SUVmax and nectin-4 expression determined by immunohistochemistry staining was analyzed in 36 of 62 patients. Results: The SUVmax of 68Ga-N188 had a positive correlation with membranous nectin-4 expression in the various tumor types tested (r = 0.458; P = 0.005), whereas no association was observed between the SUVmax and cytoplasmic nectin-4 expression. The detection rates for patient-based analysis of 68Ga-N188 and 18F-FDG PET/CT examinations were comparable (95.00% [57/60] vs. 93.33% [56/60]). In patients with pancreatic cancer, 68Ga-N188 exhibited a potential advantage for detecting residual or locally recurrent tumors; this advantage may assist in clinical decision-making. Conclusion: The correlation between nectin-4-targeted 68Ga-N188 PET imaging and membranous nectin-4 expression indicates the potential of 68Ga-N188 as an effective tool for selecting patients who may benefit from enfortumab vedotin treatment. The PET imaging results provided evidence to explore nectin-4-targeted therapy in a variety of tumors. 68Ga-N188 may improve the restaging of pancreatic cancer but requires further evaluation in a powered, prospective setting.


Assuntos
Moléculas de Adesão Celular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Moléculas de Adesão Celular/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Adulto , Anticorpos Monoclonais/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Idoso de 80 Anos ou mais , Pesquisa Translacional Biomédica , Nectinas
5.
Anal Chem ; 96(19): 7669-7678, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38708542

RESUMO

Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.


Assuntos
Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Movimento Celular , Moléculas de Adesão Celular/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Metaloproteinase 14 da Matriz/metabolismo
6.
Exp Gerontol ; 191: 112441, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685507

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.


Assuntos
Antígenos de Neoplasias , Apoptose , Moléculas de Adesão Celular , Progressão da Doença , Dinaminas , Mitofagia , Proteínas Quinases , Doença Pulmonar Obstrutiva Crônica , Regulação para Cima , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Idoso , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Feminino , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Pulmão/metabolismo , Pulmão/patologia , Pessoa de Meia-Idade , Ratos , Mitocôndrias/metabolismo , Linhagem Celular , Ratos Sprague-Dawley
8.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664366

RESUMO

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Assuntos
Autofagia , Moléculas de Adesão Celular , Morfolinas , Nectinas , Neoplasias da Bexiga Urinária , Autofagia/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Humanos , Animais , Linhagem Celular Tumoral , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Nus , Cromonas/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
In Vitro Cell Dev Biol Anim ; 60(4): 382-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625487

RESUMO

It is necessary to explore new targets for the treatment of colon adenocarcinoma (COAD) according to the tumor microenvironment. The expression levels of JAML and CXADR were analyzed by bioinformatics analysis and validation of clinical samples. JAML over-expression CD8+ T cell line was constructed, and the proliferation activity was detected by MTT. The production of inflammatory factors was detected by ELISA. The expression of immune checkpoint PD-1 and TIM-3 was detected by Western blot. The apoptosis level was detected by flow cytometry and apoptosis markers. The AOM/DSS mouse model of colorectal cancer was constructed. The expression levels of JAML, CXADR and PD-1 were detected by PCR and Western blot, and the proportion of CD8+ T cells and exhausted T cells were detected by flow cytometry. The expression levels of JAML and CXADR were significantly decreased in colon cancer tissues. Overexpression of JAML can promote the proliferation of T cells, secrete a variety of inflammatory factors. Overexpression of CXADR can reduce the proliferation of colorectal cancer cells, promote apoptosis, and down-regulate the migration and invasion ability of tumor cells. Both JAML agonists and PD-L1 inhibitors can effectively treat colorectal cancer, and the combined use of JAML agonists and PD-L1 inhibitors can enhance the effect. JAML can promote the proliferation and toxicity of CD8+ T cells and down-regulate the expression of immune checkpoints in colon cancer. CXADR can inhibit the proliferation of cancer cells and promote the apoptosis. JAML agonist can effectively treat colorectal cancer by regulating CD8+ T cells.


Assuntos
Apoptose , Linfócitos T CD8-Positivos , Carcinogênese , Proliferação de Células , Neoplasias Colorretais , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Humanos , Proliferação de Células/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Carcinogênese/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Masculino
11.
Tissue Eng Regen Med ; 21(4): 587-594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451425

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been highlighted as a potent therapeutic option for conditions with excessive osteoclast activity such as systemic and local bone loss in rheumatic disease. In addition to their immunomodulatory functions, MSCs also directly suppress osteoclast differentiation and activation by secreting osteoprotegerin (OPG) and IL-10 but the underlying mechanisms are still to be clarified. Tumor necrosis factor-stimulated gene-6 (TSG-6) is a potent anti-inflammatory molecule that inhibits osteoclast activation and has been shown to mediate MSC's immunomodulatory functions. In this study, we aimed to determine whether adipose tissue-derived MSC (ADMSC) inhibits the differentiation from osteoclast precursors to mature osteoclasts through TSG-6. METHODS: Human ADMSCs were co-cultured with bone marrow-derived monocyte/macrophage (BMMs) from DBA/1J or B6 mouse in the presence of osteoclastogenic condition (M-CSF 10 ng/mL and RANKL 10 ng/mL). In some co-culture groups, ADMSCs were transfected with siRNA targeting TSG-6 or OPG to determine their role in osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) activity in culture supernatant and mRNA expression of osteoclast markers were investigated. TRAP+ multinucleated cells and F-actin ring formation were counted. RESULTS: ADMSCs significantly inhibited osteoclast differentiation under osteoclastogenic conditions. Suppression of TSG-6 significantly reversed the inhibition of osteoclast differentiation in a degree similar to that of OPG based on TRAP activity, mRNA expression of osteoclast markers, and numbers of TRAP+ multinucleated cell and F-actin ring formation. CONCLUSION: This study demonstrated that ADMSCs inhibit osteoclast differentiation through TSG-6 under osteoclastogenic conditions.


Assuntos
Tecido Adiposo , Moléculas de Adesão Celular , Diferenciação Celular , Células-Tronco Mesenquimais , Osteoclastos , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Animais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Camundongos , Moléculas de Adesão Celular/metabolismo , Osteoprotegerina/metabolismo , Técnicas de Cocultura , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Macrófagos/metabolismo , Macrófagos/citologia
13.
BMC Cancer ; 24(1): 367, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515057

RESUMO

BACKGROUND: Cell adhesion molecule 3 (CADM3), a transmembrane glycoprotein on cell membranes, plays a role in the way of ligand and receptor interaction. However, there are few studies on CADM3 in tumors, and how it works in breast cancer (BC) remains unclear. METHODS: The Cancer Genome Atlas (TCGA) database and clinical samples were used to analyze CADM3 expression and its correlation with clinicopathological factors and prognosis. Its correlation with immune infiltration was analyzed by TCGA. The effects of CADM3 on proliferation and migration were investigated by cell clonal formation, CCK-8, cell scratch and transwell assay. Protein interaction network was prepared and the function prediction of related genes was conducted. The correlation between CADM3 and MAPK pathway was further explored by western blot experiment. RESULTS: The expression of CADM3 in BC tissues were significantly lower than that in adjacent normal tissues. High level of CADM3 was related to better prognosis of BC patients. CADM3 was an independent prognostic factor for BC. Expression of CADM3 was significantly associated with the status of ER and PR, age and PAM50 subtypes. CADM3 positively related to many immune infiltrating cells. Overexpression of CADM3 can notably reduce cell proliferation and migration. CADM3 was related to MAPK pathway and the phosphorylation of ERK1/2 and JNK1 was inhibited in BC cells with high CADM3. CONCLUSIONS: Our research reveals the clinical significance of CADM3 in BC and indicates the critical roles of CADM3 in immune infiltration and MAPK pathway.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Relevância Clínica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Prognóstico , Imunoglobulinas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
14.
J Biol Chem ; 300(4): 107202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508310

RESUMO

We are interested in the contribution of integrins and the extracellular matrix to epithelial differentiation in carcinomas. This study was motivated by our finding that the Hippo effectors YAP and TAZ can sustain the expression of laminin 332 (LM332), the predominant ECM ligand for the integrin ß4, in breast carcinoma cells with epithelial differentiation. More specifically, we observed that YAP and TAZ regulate the transcription of the LAMC2 subunit of LM332. Given that the ß4-LM332 axis is associated with epithelial differentiation and YAP/TAZ have been implicated in carcinoma de-differentiation, we sought to resolve this paradox. Here, we observed that the ß4 integrin sustains the expression of miR-200s that target the transcription factor ZEB1 and that ZEB1 has a pivotal role in determining the nature of YAP/TAZ-mediated transcription. In the presence of ß4, ZEB1 expression is repressed enabling YAP/TAZ/TEAD-mediated transcription of LAMC2. The absence of ß4, however, induces ZEB1, and ZEB1 binds to the LAMC2 promoter to inhibit LAMC2 transcription. YAP/TAZ-mediated regulation of LAMC2 has important functional consequences because we provide evidence that LM332 enables carcinoma cells to resist ferroptosis in concert with the ß4 integrin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Integrina beta4 , Fatores de Transcrição , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Humanos , Integrina beta4/metabolismo , Integrina beta4/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Calinina , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Transativadores/metabolismo , Transativadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Feminino
15.
Clin Transl Med ; 14(3): e1630, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509842

RESUMO

BACKGROUND AND AIMS: Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS: JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS: Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION: JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS: JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.


Assuntos
Moléculas de Adesão Celular , Regeneração Hepática , Transplante de Fígado , Animais , Humanos , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Doadores Vivos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Moléculas de Adesão Celular/metabolismo
16.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551961

RESUMO

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Assuntos
Células Amácrinas , Adesão Celular , Endocitose , PTEN Fosfo-Hidrolase , Retina , Via de Sinalização Wnt , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Retina/metabolismo , Camundongos , Células Amácrinas/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas Wnt/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética
17.
Commun Biol ; 7(1): 296, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461356

RESUMO

The intricate crosstalk of various cell death forms was recently implicated in cancers, laying a foundation for exploring the association between cell death and cancers. Recent evidence has demonstrated that biological networks outperform snapshot gene expression profiles at discovering promising biomarkers or heterogenous molecular subtypes across different cancer types. In order to investigate the behavioral patterns of cell death-related interaction perturbation in colorectal cancer (CRC), this study constructed the interaction-perturbation network with 11 cell death pathways and delineated four cell death network (CDN) derived heterogeneous subtypes (CDN1-4) with distinct molecular characteristics and clinical outcomes. Specifically, we identified a subtype (CDN4) endowed with high autophagy activity and the worst prognosis. Furthermore, AOC3 was identified as a potential autophagy-related biomarker, which demonstrated exceptional predictive performance for CDN4 and significant prognostic value. Overall, this study sheds light on the complex interplay of various cell death forms and reveals an autophagy-related gene AOC3 as a critical prognostic marker in CRC.


Assuntos
Amina Oxidase (contendo Cobre) , Morte Celular , Neoplasias Colorretais , Humanos , Autofagia/genética , Biomarcadores , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Prognóstico , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
18.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471041

RESUMO

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Superinfecção , Humanos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Regulação para Baixo , Herpesvirus Humano 1/fisiologia , Queratinócitos , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
19.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473788

RESUMO

Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Proliferação de Células , Neoplasias Colorretais/patologia , Moléculas de Adesão Celular/metabolismo , Ligante CD27/metabolismo
20.
Thorac Cancer ; 15(13): 1082-1094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553795

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play critical roles in the tumorigenesis and radiosensitivity of multiple cancers. Nevertheless, the biological functions of circRNA periostin (circ-POSTN) in esophageal cancer (EC) progression and radiosensitivity have not been well elucidated. METHODS: The expression of circ-POSTN, microRNA-876-5p (miR-876-5p), and proto-oncogene tyrosine-protein kinase (FYN) was analyzed by quantitative reverse transcription PCR (RT-qPCR). Cell proliferation was assessed by MTT, colony formation, and 5-ethynyl-2'-deoxyuridine (EDU) assays. All protein levels were detected by western blot assay. Cell apoptosis and invasion were assessed by flow cytometry analysis and transwell assay, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the interaction between miR-876-5p and circ-POSTN or FYN. The role of circ-POSTN in vivo was explored by establishing mice xenograft model. RESULTS: Circ-POSTN was overexpressed in EC tissues and cells. Knockdown of circ-POSTN inhibited cell proliferation and invasion and elevated apoptosis and radiosensitivity in EC cells. MiR-876-5p was a direct target of circ-POSTN, and its knockdown reversed the role of sh-circ-POSTN in EC cells. FYN was a direct target of miR-876-5p, and FYN elevation weakened the effects of miR-876-5p overexpression on the progression and radiosensitivity of EC cells. Moreover, circ-POSTN acted as a miR-876-5p sponge to regulate FYN expression. Circ-POSTN interference also suppressed tumor growth and enhanced radiosensitivity in vivo. CONCLUSION: Circ-POSTN knockdown inhibited proliferation and invasion, but increased apoptosis and enhanced radiosensitivity in EC cells via modulating miR-876-5p/FYN axis, which might be a potential diagnostic and therapeutic target for EC.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , MicroRNAs , RNA Circular , Tolerância a Radiação , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Camundongos , Tolerância a Radiação/genética , Apoptose , Progressão da Doença , Proto-Oncogene Mas , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA