Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Endocrinol Invest ; 47(5): 1215-1226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485895

RESUMO

PURPOSE: Papillary Thyroid Carcinoma (PTC) is the most prevalent subtype of Thyroid Carcinoma (THCA), a type of malignancy in the endocrine system. According to prior studies, Neural Cell Adhesion Molecule (NRCAM) has been found to be up-regulated in PTC and stimulates the proliferation and migration of PTC cells. However, the specific mechanism of NRCAM in PTC cells is not yet fully understood. Consequently, this study aimed to investigate the underlying mechanism of NRCAM in PTC cells, the findings of which could provide new insights for the development of potential treatment targets for PTC. METHODS AND RESULTS: Bioinformatics tools were utilized and a series of experiments were conducted, including Western blot, colony formation, and dual-luciferase reporter assays. The data collected indicated that NRCAM was overexpressed in THCA tissues and PTC cells. Circular RNA NRCAM (circNRCAM) was found to be highly expressed in PTC cells and to positively regulate NRCAM expression. Through loss-of-function assays, both circNRCAM and NRCAM were shown to promote the proliferation, invasion, and migration of PTC cells. Mechanistically, this study confirmed that precursor microRNA-506 (pre-miR-506) could bind with m6A demethylase AlkB Homolog 5 (ALKBH5), leading to its m6A demethylation. It was also discovered that circNRCAM could competitively bind to ALKBH5, which restrained miR-506-3p expression and promoted NRCAM expression. CONCLUSION: In summary, circNRCAM could up-regulate NRCAM by down-regulating miR-506-3p, thereby enhancing the biological behaviors of PTC cells.


Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , RNA Circular , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Regulação para Cima , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , RNA Circular/genética , RNA Circular/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética
2.
Dis Markers ; 2022: 1509994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199823

RESUMO

The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Anquirinas/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Marcadores Genéticos , Predisposição Genética para Doença , Genômica , Humanos , Cazaquistão , Moléculas de Adesão de Célula Nervosa/genética
3.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076963

RESUMO

Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.


Assuntos
Glioblastoma , Neuroblastoma , Glioblastoma/metabolismo , Humanos , Hipóxia/metabolismo , Recidiva Local de Neoplasia , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Microambiente Tumoral
4.
Biomed Res Int ; 2022: 5593619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187167

RESUMO

METHODS: Two datasets were used as training and validation cohorts to establish the predictive model. We used three types of screening criteria: background analysis, pathway analysis, and functional analysis provided by the cBioportal website. Fisher's exact test and multivariable logistic regression were performed to screen out related genes. Furthermore, we performed receiver operating characteristic (ROC) and Kaplan-Meier curve analyses to evaluate the correlation between the selected genes and overall survival. RESULT: We screened five genes (KNL1, NRXN1, C6, CCDC169-SOHLH2, and TTN) that were highly related to recurrence of GC. The area under the receiver operating characteristic (ROC) curve was 0.813, which was much higher than that of the baseline model (AUC = 0.699). This result suggested that the mutation of five selected genes had a significant effect on the prediction of recurrence compared with other factors (age, stages, history, etc.). Furthermore, the Kaplan-Meier estimator also revealed that the mutation of five genes positively correlated with patient survival. CONCLUSIONS: The patients who have mutations in these five genes may experience longer survival than those who do not have mutations. This five-gene panel will likely be a practical tool for prognostic evaluation and will provide another possible way for clinicians to determine therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Algoritmos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/genética , Complemento C6/genética , Conectina/genética , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Moléculas de Adesão de Célula Nervosa/genética , Prognóstico , Neoplasias Gástricas/patologia , Análise de Sobrevida
5.
Nat Commun ; 12(1): 7292, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911933

RESUMO

Identifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.


Assuntos
Epigênese Genética , Neoplasias da Próstata/genética , Fator de Transcrição CDX2/genética , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Perda de Heterozigosidade , Masculino , Estadiamento de Neoplasias , Moléculas de Adesão de Célula Nervosa/genética , Neoplasias da Próstata/patologia
6.
Clin Transl Med ; 11(10): e540, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709764

RESUMO

Natural killer (NK) cells preferentially accumulate at maternal-foetal interface and are believed to play vital immune-modulatory roles during early pregnancy and related immunological dysfunction may result in pregnant failure such as recurrent miscarriage (RM). However, the mechanisms underlying the establishment of maternal-foetal immunotolerance are complex but clarifying the roles of decidual NK (dNK) cells offers the potential to design immunotherapeutic strategies to assist RM patients. In this report, we analysed RNA sequencing on peripheral NK (pNK) and decidual NK cells during early pregnancy; we identified an immunomodulatory dNK subset CXCR4+ CD56bright dNK and investigated its origin and phenotypic and functional characteristics. CXCR4+ CD56bright dNK displayed a less activated and cytotoxic phenotype but an enhanced immunomodulatory potential relative to the CXCR4 negative subset. CXCR4+ CD56bright dNK promote Th2 shift in an IL-4-dependent manner and can be recruited from peripheral blood and reprogramed by trophoblasts, as an active participant in the establishment of immune-tolerance during early pregnancy. Diminished CXCR4+ dNK cells and their impaired ability to induce Th2 differentiation were found in RM patients and mouse models of spontaneous abortion. Moreover, adoptive transfer of CXCR4+ dNK cells to NK-deficient (Nfil3-/-) mice showed great therapeutic potential of CXCR4+ dNK via recovering the Th2/Th1 bias and reducing embryo resorption rates. The identification of this new dNK cell subset may lay the foundation for understanding NK cell mechanisms in early pregnancy and provide potential prognostic factors for the diagnosis and therapy of RM.


Assuntos
Aborto Habitual/prevenção & controle , Tolerância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Aborto Habitual/sangue , Aborto Habitual/imunologia , Animais , Decídua/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Moléculas de Adesão de Célula Nervosa/sangue , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/imunologia , Gravidez , Primeiro Trimestre da Gravidez , Receptores CXCR4/sangue
7.
Cell Oncol (Dordr) ; 44(5): 1065-1085, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34403115

RESUMO

PURPOSE: The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS: Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS: ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS: Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/genética , Sarcoma de Ewing/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Criança , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Prognóstico , Sarcoma de Ewing/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Células Tumorais Cultivadas , Vincristina/farmacologia
8.
Bull Exp Biol Med ; 171(3): 333-337, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34297290

RESUMO

We studied the participation of JNK and p53 in the realization of the growth potential of different types of progenitors of the subventricular zone of mouse brain and secretion of neurotrophins by glial cells. The stimulating role of these signaling molecules in mitotic activity and specialization of multipotent neural stem cells was shown. It was found that JNK and p53 do not participate in the regulation of committed neuronal progenitor cells (clonogenic PSA-NCAM+ cells). A dependence of neurotrophic growth factors in individual populations of neuroglia on activity of these protein kinase and transcription factor was revealed. The role of JNK and p53 in astrocytes consists in stimulation of their secretion, and in microglial cells, on the contrary, in its inhibition. The secretory neurotrophic function of oligodendrogliocytes is not associated with JNK and p53 activity.


Assuntos
Astrócitos/metabolismo , MAP Quinase Quinase 4/genética , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Benzotiazóis/farmacologia , Antígeno CD56/genética , Antígeno CD56/metabolismo , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica , Ventrículos Laterais/citologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Transdução de Sinais , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/metabolismo
9.
Comput Math Methods Med ; 2021: 4856820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158819

RESUMO

Thyroid cancer (TC) is the most common endocrine malignant disease with a rising morbidity year by year. Accumulating studies have shown that microRNAs (miRNAs) play a regulatory role in the progression of various tumors, but the molecular regulatory mechanism of miR-196a-2 in TC is still unknown. qRT-PCR was employed to measure the expression of miR-196a-2 and NRXN1 mRNA in TC cells, while western blot was used to detect the protein expression of NRXN1. CCK-8, colony formation and flow cytometry assays were used to measure cell proliferation and apoptosis of TC cells. Dual-luciferase reporter gene assay was used to predict and verify the targeted binding relationship between miR-196a-2 and NRXN1. Our study results manifested that miR-196a-2 was dramatically overexpressed in cells of TC, while NRXN1 was lowly expressed. miR-196a-2 could promote cell proliferation and inhibit cell apoptosis of TC. Additionally, miR-196a-2 could also target and inhibit the expression of NRXN1. Silencing NRXN1 could reverse the inhibitory effect of miR-196a-2 downregulation on cell proliferation of TC, as well as the promoting effect on cell apoptosis. In a conclusion, we found that miR-196a-2 could promote cell proliferation and inhibit cell apoptosis of TC by targeting NRXN1. Therefore, miR-196a-2/NRXN1 is potential to be a molecular therapeutic target for TC.


Assuntos
Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , MicroRNAs/genética , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/genética , Neoplasias da Glândula Tireoide/genética , Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , MicroRNAs/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
10.
Cell Prolif ; 54(7): e13078, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101282

RESUMO

OBJECTIVES: Salivary gland regeneration is closely related to the parasympathetic nerve; however, the mechanism behind this relationship is still unclear. The aim of this study was to evaluate the relationship between the parasympathetic nerve and morphological differences during salivary gland regeneration. MATERIALS AND METHODS: We used a duct ligation/deligation-induced submandibular gland regeneration model of Sprague-Dawley (SD) rats. The regenerated submandibular gland with or without chorda lingual (CL) innervation was detected by haematoxylin-eosin staining, real-time PCR (RT-PCR), immunohistochemistry and Western blotting. We counted the number of Ki67-positive cells to reveal the proliferation process that occurs during gland regeneration. Finally, we examined the expression of the following markers: aquaporin 5, cytokeratin 7, neural cell adhesion molecule (NCAM) and polysialyltransferases. RESULTS: Intact parasympathetic innervation promoted submandibular gland regeneration. The process of gland regeneration was significantly repressed by cutting off the CL nerve. During gland regeneration, Ki67-positive cells were mainly found in the ductal structures. Moreover, the expression of NCAM and polysialyltransferases-1 (PST) expression in the innervation group was significantly increased during early regeneration and decreased in the late stages. In the denervated submandibular glands, the expression of NCAM decreased during regeneration. CONCLUSIONS: Our findings revealed that the regeneration of submandibular glands with intact parasympathetic innervation was associated with duct cell proliferation and the increased expression of PST and NCAM.


Assuntos
Sistema Nervoso Parassimpático/fisiologia , Glândula Submandibular/fisiologia , Animais , Proliferação de Células , Antígeno Ki-67/metabolismo , Masculino , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Sistema Nervoso Parassimpático/cirurgia , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia , Ductos Salivares/citologia , Ductos Salivares/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Glândula Submandibular/patologia , Regulação para Cima
11.
Front Endocrinol (Lausanne) ; 12: 657953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054729

RESUMO

Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells. The function of NCAM was further confirmed in NCAM-deficient mesenchymal stem cells (MSCs), which also had a phenotype with reduced osteoblastic potential. Moreover, NCAM silencing induced decrease of Wnt/ß-catenin and Akt activation. The Wnt inhibitor blocked osteoblast differentiation, and the Wnt activator recovered osteoblast differentiation in NCAM-silenced MC3T3-E1 cells. We lastly demonstrated that osteoblast differentiation of MC3T3-E1 cells was inhibited by the PI3K-Akt inhibitor. In conclusion, these results demonstrate that NCAM silencing inhibited osteoblastic differentiation through inactivation of Wnt/ß-catenin and PI3K-Akt signaling pathways.


Assuntos
Diferenciação Celular , Moléculas de Adesão de Célula Nervosa/metabolismo , Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
12.
Mol Cell Neurosci ; 112: 103614, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845123

RESUMO

Homozygous Dab1 yotari mutant mice, Dab1yot (yot/yot) mice, have an autosomal recessive mutation of Dab1 and show reeler-like phenotype including histological abnormality of the cerebellum, hippocampus, and cerebral cortex. We here show abnormal hippocampal development of yot/yot mice where granule cells and pyramidal cells fail to form orderly rows but are dispersed diffusely in vague multiplicative layers. Possibly due to the positioning failure of granule cells and pyramidal cells and insufficient synaptogenesis, axons of the granule cells did not extend purposefully to connect with neighboring regions in yot/yot mice. We found that both hippocampal granule cells and pyramidal cells of yot/yot mice expressed proteins reactive with the anti-Dab1 antibody. We found that Y198- phosphorylated Dab1 of yot/yot mice was greatly decreased. Accordingly the downstream molecule, Akt was hardly phosphorylated. Especially, synapse formation was defective and the distribution of neurons was scattered in hippocampus of yot/yot mice. Some of neural cell adhesion molecules and hippocampus associated transcription factors of the neurons were expressed aberrantly, suggesting that the Reelin-Dab1 signaling pathway seemed to be importantly involved in not only neural migration as having been shown previously but also neural maturation and/or synaptogenesis of the mice. It is interesting to clarify whether the defective neural maturation is a direct consequence of the dysfunctional Dab1, or alternatively secondarily due to the Reelin-Dab1 intracellular signaling pathways.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Hipocampo/anormalidades , Camundongos Mutantes/anormalidades , Proteínas do Tecido Nervoso/fisiologia , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Movimento Celular , Ativação Enzimática , Proteínas da Matriz Extracelular/deficiência , Genes Recessivos , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/patologia , Homozigoto , Camundongos , Camundongos Mutantes/genética , Camundongos Mutantes/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/biossíntese , Moléculas de Adesão de Célula Nervosa/genética , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Reelina , Serina Endopeptidases/deficiência , Sinapses/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431662

RESUMO

Little is known about the cellular signals that organize synapse formation. To explore what signaling pathways may be involved, we employed heterologous synapse formation assays in which a synaptic adhesion molecule expressed in a nonneuronal cell induces pre- or postsynaptic specializations in cocultured neurons. We found that interfering pharmacologically with microtubules or actin filaments impaired heterologous synapse formation, whereas blocking protein synthesis had no effect. Unexpectedly, pharmacological inhibition of c-jun N-terminal kinases (JNKs), protein kinase-A (PKA), or AKT kinases also suppressed heterologous synapse formation, while inhibition of other tested signaling pathways-such as MAP kinases or protein kinase C-did not alter heterologous synapse formation. JNK and PKA inhibitors suppressed formation of both pre- and postsynaptic specializations, whereas AKT inhibitors impaired formation of post- but not presynaptic specializations. To independently test whether heterologous synapse formation depends on AKT signaling, we targeted PTEN, an enzyme that hydrolyzes phosphatidylinositol 3-phosphate and thereby prevents AKT kinase activation, to postsynaptic sites by fusing PTEN to Homer1. Targeting PTEN to postsynaptic specializations impaired heterologous postsynaptic synapse formation induced by presynaptic adhesion molecules, such as neurexins and additionally decreased excitatory synapse function in cultured neurons. Taken together, our results suggest that heterologous synapse formation is driven via a multifaceted and multistage kinase network, with diverse signals organizing pre- and postsynaptic specializations.


Assuntos
Proteínas de Arcabouço Homer/genética , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/genética , Sinapses/genética , Citoesqueleto de Actina/genética , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Microtúbulos/genética , Moléculas de Adesão de Célula Nervosa/genética , Fosfatos de Fosfatidilinositol , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Sinapses/fisiologia
14.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255323

RESUMO

The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.


Assuntos
Terapia por Estimulação Elétrica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Moléculas de Adesão de Célula Nervosa/genética , Traumatismos da Medula Espinal/terapia , Fator A de Crescimento do Endotélio Vascular/genética , Adenoviridae/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Espaço Epidural , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Humanos , Atividade Motora/genética , Atividade Motora/fisiologia , Moléculas de Adesão de Célula Nervosa/uso terapêutico , Neuroglia/transplante , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/efeitos da radiação , Medula Espinal/fisiopatologia , Medula Espinal/efeitos da radiação , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Suínos/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
15.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962079

RESUMO

Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. In the present study, we suggest the approach of preventive gene therapy for stroke. Adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) or gene engineered umbilical cord blood mononuclear cells (UCB-MC) overexpressing recombinant VEGF, GDNF, and NCAM were intrathecally injected before distal occlusion of the middle cerebral artery in rats. Post-ischemic brain recovery was investigated 21 days after stroke modelling. Morphometric and immunofluorescent analysis revealed a reduction of infarction volume accompanied with a lower number of apoptotic cells and decreased expression of Hsp70 in the peri-infarct region in gene-treated animals. The lower immunopositive areas for astrocytes and microglial cells markers, higher number of oligodendrocytes and increased expression of synaptic proteins suggest the inhibition of astrogliosis, supporting the corresponding myelination and functional recovery of neurons in animals receiving preventive gene therapy. In this study, for the first time, we provide evidence of the beneficial effects of preventive triple gene therapy by an adenoviral- or UCB-MC-mediated intrathecal simultaneous delivery combination of vegf165, gdnf, and ncam1 on the preservation and recovery of the brain in rats with subsequent modelling of stroke.


Assuntos
Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Moléculas de Adesão de Célula Nervosa/genética , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adenoviridae , Animais , Astrócitos/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Caspases/metabolismo , Quimiocinas/sangue , Quimiocinas/líquido cefalorraquidiano , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Monócitos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuroglia/metabolismo , Neuroproteção/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Pharmacol Res ; 160: 105186, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898689

RESUMO

Neuroplastic alterations are the key processes involved in adaptation and rehabilitation after all neurological injuries and pathologies. Being the central contributor to the developmental and adult neuroplasticity, the polysialylated form of Neural Cell Adhesion Molecule (PSA-NCAM) may prove to be a potential target to facilitate repair/regeneration after CNS injury and disease. Over the years, several experimental approaches have been developed to exploit the therapeutic potential of PSA-NCAM. Broadly, the studies focused on cell-transplantation strategies to alter PSA-NCAM properties at the injury site, injection of peptide based as well as synthetic PSA mimetics directly into the injury site or the application of PSA containing hydrogels and scaffolds as biomaterials. A comprehensive understanding of the PSA-based experimental approaches, as well as their pros and cons, is urgently required for successful implementation of this molecule in therapeutics. The current review, therefore, has been designed to give the readers a thorough account of all the diverse roles of PSA in the adult nervous system and the recent progress that has been made in developing PSA-based therapeutic approaches for neuroregeneration.


Assuntos
Moléculas de Adesão de Célula Nervosa/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Plasticidade Neuronal/fisiologia , Ácidos Siálicos/farmacologia , Animais , Humanos , Regeneração Nervosa/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/genética
17.
Nat Commun ; 11(1): 3896, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753727

RESUMO

The outbreak of Zika virus (ZIKV) in 2016 created worldwide health emergency which demand urgent research efforts on understanding the virus biology and developing therapeutic strategies. Here, we present a time-resolved chemical proteomic strategy to track the early-stage entry of ZIKV into host cells. ZIKV was labeled on its surface with a chemical probe, which carries a photocrosslinker to covalently link virus-interacting proteins in living cells on UV exposure at different time points, and a biotin tag for subsequent enrichment and mass spectrometric identification of the receptor or other host proteins critical for virus internalization. We identified Neural Cell Adhesion Molecule (NCAM1) as a potential ZIKV receptor and further validated it through overexpression, knockout, and inhibition of NCAM1 in Vero cells and human glioblastoma cells U-251 MG. Collectively, the strategy can serve as a universal tool to map virus entry pathways and uncover key interacting proteins.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Proteômica , Receptores Virais/metabolismo , Internalização do Vírus , Replicação Viral/fisiologia , Zika virus/fisiologia , Animais , Antígeno CD56/genética , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Técnicas de Inativação de Genes , Glioblastoma , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Moléculas de Adesão de Célula Nervosa/genética , Células Vero , Proteínas Virais/metabolismo , Ligação Viral , Infecção por Zika virus/virologia
18.
J Clin Lab Anal ; 34(10): e23450, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32672359

RESUMO

BACKGROUND: In this study, we aimed to identify the pathogenesis and prognostic biomarkers of lung adenocarcinoma (LUAD). METHODS: Differentially expressed mRNAs (DEmRNAs) and single nucleotide polymorphism (SNP) mutant genes were screened. In addition, enrichment and protein-protein interaction (PPI) network analyses of the SNP-mutated genes were performed. Thereafter, the correlation between gene mutation and expression was analyzed. Finally, the mutated genes associated with LUAD prognosis were validated on the basis of The Cancer Genome Atlas (TCGA) database. RESULTS: A total of 2502 DEmRNAs were initially screened in this study. We identified 756 SNP-mutated genes from more than 30 cases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the mutated genes involved in LUAD were mainly associated with the ECM-receptor interaction, focal adhesion, and calcium signaling pathways. Tumor protein p53 (TP53) and neurexin 1 (NRXN1) with the higher degree were chosen as the hub genes in the PPI network. In addition, the correlation analysis revealed six genes, including assembly factor for spindle microtubules (ASPM), centromere protein F (CENPF), contactin 3 (CNTN3), catenin delta 2 (CTNND2), PKHD1 like 1 (PKHD1L1), and semaphorin 6D (SEMA6D), and three SNP mutations at ASPM rs368020495, CENPF rs762653487, and PKHD1L1 rs768349010 sites that were found to be associated with LUAD prognosis. Further validation showed that among the aforementioned six mutated genes, CENPF was upregulated and SEMA6D was downregulated. CONCLUSION: CENPF, SEMA6D, TP53, and NRXN1 were found to be closely associated with the development of LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Adenocarcinoma de Pulmão/mortalidade , Proteínas de Ligação ao Cálcio/genética , Proteínas Cromossômicas não Histona/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Proteínas dos Microfilamentos/genética , Mutação , Moléculas de Adesão de Célula Nervosa/genética , Prognóstico , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Semaforinas/genética , Proteína Supressora de Tumor p53/genética
20.
J Cell Physiol ; 235(9): 6194-6203, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31975433

RESUMO

Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.


Assuntos
MicroRNAs/genética , Moléculas de Adesão de Célula Nervosa/genética , Neoplasias da Próstata/genética , Hipóxia Tumoral/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA