Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Int J Pharm ; 654: 123983, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460768

RESUMO

AIM: The study aimed to develop enzyme-degradable nanoparticles comprising polyphosphates and metal cations providing sustained release of the antibacterial drug ethacridine (ETH). METHODS: Calcium polyphosphate (Ca-PP), zinc polyphosphate (Zn-PP) and iron polyphosphate nanoparticles (Fe-PP NPs) were prepared by co-precipitation of sodium polyphosphate with cations and ETH. Developed nanocarriers were characterized regarding particle size, PDI, zeta potential, encapsulation efficiency and drug loading. Toxicological profile of nanocarriers was assessed via hemolysis assay and cell viability on human blood erythrocytes and HEK-293 cells, respectively. The enzymatic degradation of NPs was evaluated in presence of alkaline phosphatase (ALP) monitoring the release of monophosphate, shift in zeta potential and particle size as well as drug release. The antibacterial efficacy against Escherichia coli was determined via microdilution assay. RESULTS: NPs were obtained in a size range between 300 - 480 nm displaying negative zeta potential values. Encapsulation efficiency was in the range of 83.73 %- 95.99 %. Hemolysis assay underlined sufficient compatibility of NPs with blood cells, whereas drug and NPs showed a concentration dependent effect on HEK-293 cells viability. Ca- and Zn-PP NPs exhibited remarkable changes in zeta potential, particle size, monophosphate and drug release upon incubation with ALP, compared to Fe-PP NPs showing only minor differences. The released ETH from Ca- and Zn-PP nanocarriers retained the antibacterial activity against E. coli, whereas no antibacterial effect was observed with Fe-PP NPs. CONCLUSION: Polyphosphate nanoparticles cross-linked with divalent cations and ETH hold promise for sustained drug delivery triggered by ALP for parental administration.


Assuntos
Nanopartículas , Monoéster Fosfórico Hidrolases , Humanos , Preparações Farmacêuticas , Monoéster Fosfórico Hidrolases/farmacologia , Liberação Controlada de Fármacos , Hemólise , Escherichia coli , Células HEK293 , Antibacterianos/farmacologia , Cátions , Polifosfatos , Tamanho da Partícula , Portadores de Fármacos/farmacologia
2.
Int Immunopharmacol ; 126: 111278, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011768

RESUMO

Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Microglia , Doenças Neuroinflamatórias , Palmitatos/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
J Transl Med ; 21(1): 819, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974250

RESUMO

BACKGROUND: The protein tyrosine phosphatase H receptor (PTPRH) is known to regulate the occurrence and development of pancreatic and colorectal cancer. However, its association with glycolysis in non-small cell lung cancer (NSCLC) is still unclear. In this study, we aimed to investigate the relationship between PTPRH expression and glucose metabolism and the underlying mechanism of action. METHODS: The expression of PTPRH in NSCLC cells was evaluated by IHC staining, qRT‒PCR and Western blotting. The effect of PTPRH on cell biological behavior was evaluated by colony assays, EdU experiments, Transwell assays, wound healing assays and flow cytometry. Changes in F-18-fluorodeoxyglucose (18F-FDG) uptake and glucose metabolite levels after altering PTPRH expression were detected via a gamma counter and lactic acid tests. The expression of glycolysis-related proteins in NSCLC cells was detected by Western blotting after altering PTPRH expression. RESULTS: The results showed that PTPRH was highly expressed in clinical patient tissue samples and closely related to tumor diameter and clinical stage. In addition, PTPRH expression was associated with glycometabolism indexes on 18F-FDG positron emission tomography/computed tomography (PET/CT) imaging, the expression level of Ki67 and the expression levels of glycolysis-related proteins. PTPRH altered cell behavior, inhibited apoptosis, and promoted 18F-FDG uptake, lactate production, and the expression of glycolysis-related proteins. In addition, PTPRH modulated the glycometabolism of NSCLC cells via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, as assessed using LY294002 and 740Y-P (an inhibitor and agonist of PI3K, respectively). The same results were validated in vivo using a xenograft tumor model in nude mice. Protein expression levels of PTPRH, glycolysis-related proteins, p-PI3K/PI3K and p-AKT/AKT were measured by IHC staining using a subcutaneous xenograft model in nude mice. CONCLUSIONS: In summary, we report that PTPRH promotes glycolysis, proliferation, migration, and invasion via the PI3K/AKT/mTOR signaling pathway in NSCLC and ultimately promotes tumor progression, which can be regulated by LY294002 and 740Y-P. These results suggest that PTPRH is a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Pulmonares/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Monoéster Fosfórico Hidrolases/uso terapêutico , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proliferação de Células , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Glicólise , Mamíferos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37741603

RESUMO

We used the gill (Na+, K+)-ATPase as a molecular marker to provide a comprehensive kinetic analysis of the effects of Co2+in vitro on the modulation of K+-phosphatase activity in the Blue crab Callinectes danae. Co2+ can stimulate or inhibit K+-phosphatase activity. With Mg2+, K+-phosphatase activity is almost completely inhibited by Co2+. Co2+ stimulates K+-phosphatase activity similarly to Mg2+ although with a ≈4.5-fold greater affinity. At saturating Mg2+ concentrations, Mg2+ displaces bound Co2+ from the Mg2+-binding site in a concentration dependent manner, but Co2+ cannot displace Mg2+ from its binding site even at millimolar concentrations. Saturation by Co2+ of the Mg2+ binding site does not affect pNPP recognition by the enzyme. Substitution of Mg2+ by Co2+ slightly increases enzyme affinity for K+ and NH4+. Independently of Mg2+, inhibition by ouabain or sodium ions is unaffected by Co2+. Investigation of gill (Na+, K+)-ATPase K+-phosphatase activity provides a reliable tool to examine the kinetic effects of Co2+ with and without Na+ and ATP. Given that the toxic effects of Co2+ at the molecular level are poorly understood, these findings advance our knowledge of the mechanism of action of Co2+ on the crustacean gill (Na+, K+)-ATPase.


Assuntos
Braquiúros , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Cinética , Cobalto/toxicidade , Brânquias/metabolismo , Íons , Sódio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
5.
Am J Physiol Cell Physiol ; 324(6): C1320-C1331, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154493

RESUMO

Radiation-induced heart disease (RIHD) progresses over time and may manifest decades after the initial radiation exposure, which is associated with significant morbidity and mortality. The clinical benefit of radiotherapy is always counterbalanced by an increased risk of cardiovascular events in survivors. There is an urgent need to explore the effect and the underlying mechanism of radiation-induced heart injury. Mitochondrial damage widely occurs in irradiation-induced injury, and mitochondrial dysfunction contributes to necroptosis development. Experiments were performed using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and rat H9C2 cells to investigate the effect of mitochondrial injury on necroptosis in irradiated cardiomyocytes and to further elucidate the mechanism underlying radiation-induced heart disease and discover possible preventive targets. After γ-ray irradiation, the expression levels of necroptosis markers were increased, along with higher oxidative stress and mitochondrial injury. These effects could be abated by overexpression of protein tyrosine phosphatase, mitochondrial 1 (PTPMT1). Inhibiting oxidative stress or increasing the expression of PTPMT1 could protect against radiation-induced mitochondrial injury and then decrease the necroptosis of cardiomyocytes. These results suggest that PTPMT1 may be a new target for the treatment of radiation-induced heart disease.NEW & NOTEWORTHY Effective strategies are still lacking for treating RIHD, with unclear pathological mechanisms. In cardiomyocytes model of radiation-induced injuries, we found γ-ray irradiation decreased the expression of PTPMT1, increased oxidative stress, and induced mitochondrial dysfunction and necroptosis in iPSC-CMs. ROS inhibition attenuated radiation-induced mitochondrial damage and necroptosis. PTPMT1 protected cardiomyocytes from necroptosis induced by γ-ray irradiation by alleviating mitochondrial injury. Therefore, PTPMT1 might be a potential strategy for treating RIHD.


Assuntos
Cardiopatias , Miócitos Cardíacos , Animais , Ratos , Cardiopatias/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Necroptose , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
6.
Cell Mol Neurobiol ; 43(6): 2989-3003, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37106272

RESUMO

Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Fármacos Neuroprotetores , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Monoéster Fosfórico Hidrolases/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/farmacologia , Apoptose , Glucose/metabolismo
7.
Behav Brain Res ; 446: 114415, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-36997095

RESUMO

Sphingosine-1-phosphate (S1P) is emerging as a crucial sphingolipid modulating neuroinflammation and cognition. S1P levels in the brain have been found to be decreased in cognitive impairment. S1P lyase (S1PL) is the key enzyme in metabolizing S1P and has been implicated in neuroinflammation. This study evaluated the effect of S1PL inhibition on cognition in type 2 diabetic mice. Fingolimod (0.5 mg/kg and 1 mg/kg) rescued cognition in high-fat diet and streptozotocin-induced diabetic mice, as evident in the Y maze and passive avoidance test. We further evaluated the effect of fingolimod on the activation of microglia in the pre-frontal cortex (PFC) and hippocampus of diabetic mice. Our study revealed that fingolimod inhibited S1PL and promoted anti-inflammatory microglia in both PFC and hippocampus of diabetic mice as it increased Ym-1 and arginase-1. The levels of p53 and apoptotic proteins (Bax and caspase-3) were elevated in the PFC and hippocampus of type 2 diabetic mice which fingolimod reversed. The underlying mechanism promoting anti-inflammatory microglial phenotype was also explored in this study. TIGAR, TP53-associated glycolysis and apoptosis regulator, is known to foster anti-inflammatory microglia and was found to be downregulated in the brain of type 2 diabetic mice. S1PL inhibition decreased the levels of p53 and promoted TIGAR, thereby increasing anti-inflammatory microglial phenotype and inhibiting apoptosis in the brain of diabetic mice. Our study reveals that S1PL inhibition could be beneficial in mitigating cognitive deficits in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Esfingosina/farmacologia , Esfingosina/metabolismo , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Microglia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Doenças Neuroinflamatórias , Cognição , Diabetes Mellitus Tipo 2/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo
8.
ACS Appl Bio Mater ; 6(1): 164-170, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525564

RESUMO

Drug-resistant breast cancers such as Triple negative breast cancer (TNBC) do not respond successfully to chemotherapy treatments because they lack the expression of receptor targets. Drug-resistant anti-cancer treatments require innovative approaches to target these cells without relying on the receptors. Intracellular self-assembly of small molecules induced by enzymes is a nanotechnology approach for inhibiting cancer cell growth. In this approach, enzymes will induce the self-assembly of small molecules to nanofibers, which leads to cell death. Here, we investigate the self-assembly of a modified small peptide induced by two different phosphatases: alkaline phosphatase (ALP) and eye absent tyrosine phosphatase (EYA). ALPs are expressed in many adult human tissues and are critical for many cellular functions. EYAs are embryonic enzymes that are over-expressed in drug-resistant breast cancers. We synthesized a small diphenylalanine-based peptide with a tyrosine phosphate end group as the substrate of phosphatase enzymes. Peptides were synthesized with solid phase techniques and were characterized by HPLC and MALDI-TOF. To characterize the self-assembly of peptides exposed to enzymes, different techniques were used such as scattering light intensity, microscopes, and phosphate detection kit. We then determined the toxicity effect of the peptide against normal breast cancer cells, MCF-7, and drug-resistant breast cancer cells, MDA-MB-231. The results showed that the EYA enzyme is able to initiate self-assembly at lower peptide concentration with higher self-assembling intensity compared to ALP. A significant decrease in the TNBC cell number was observed even with a low peptide concentration of 60 µM. These results collectively support the exploration of enzyme self-assembly to treat TNBC.


Assuntos
Nanofibras , Neoplasias de Mama Triplo Negativas , Humanos , Fosfatase Alcalina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Nanofibras/química , Peptídeos/farmacologia , Monoéster Fosfórico Hidrolases/farmacologia , Monoéster Fosfórico Hidrolases/uso terapêutico , Proliferação de Células
9.
Mol Med ; 28(1): 125, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273174

RESUMO

BACKGROUND: Oxidative stress-caused damage to the retinal pigment epithelium (RPE) underlies the onset and progression of age-related macular degeneration (AMD). Impaired mitochondrial biogenesis sensitizes RPE cells to mitochondrial dysfunction, energy insufficiency and death. Src-homology 2 domain-containing phosphatase (SHP)-1 is important in regulating immune responses and cell survival. However, its roles in cell survival are not always consistent. Until now, the effects of SHP-1 on RPE dysfunction, especially mitochondrial homeostasis, remain to be elucidated. We sought to clarify the effects of SHP-1 in RPE cells in response to atRAL-induced oxidative stress and determine the regulatory mechanisms involved. METHODS: In the all trans retinal (atRAL)-induced oxidative stress model, we used the vector of lentivirus to knockdown the expression of SHP-1 in ARPE-19 cells. CCK-8 assay, Annexin V/PI staining and JC-1 staining were utilized to determine the cell viability, cell apoptosis and mitochondrial membrane potential. We also used immunoprecipitation to examine the ubiquitination modification of stimulator of interferon genes (STING) and its interaction with SHP-1. The expression levels of mitochondrial marker, proteins related to mitochondrial biogenesis, and signaling molecules involved were examined by western blotting analysis. RESULTS: We found that SHP-1 knockdown predisposed RPE cells to apoptosis, aggravated mitochondrial damage, and repressed mitochondrial biogenesis after treatment with atRAL. Immunofluoresent staining and immunoprecipitation analysis confirmed that SHP-1 interacted with the endoplasmic reticulum-resident STING and suppressed K63-linked ubiquitination and activation of STING. Inhibition of STING with the specific antagonist H151 attenuated the effects of SHP-1 knockdown on mitochondrial biogenesis and oxidative damage. The adenosine monophosphate-activated protein kinase (AMPK) pathway acted as the crucial downstream target of STING and was involved in the regulatory processes. CONCLUSIONS: These findings suggest that SHP-1 knockdown potentiates STING overactivation and represses mitochondrial biogenesis and cell survival, at least in part by blocking the AMPK pathway in RPE cells. Therefore, restoring mitochondrial health by regulating SHP-1 in RPE cells may be a potential therapeutic strategy for degenerative retinal diseases including AMD.


Assuntos
Degeneração Macular , Mitocôndrias , Epitélio Pigmentado da Retina , Retinaldeído , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose/genética , Interferons/genética , Interferons/metabolismo , Interferons/farmacologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retinaldeído/metabolismo , Retinaldeído/farmacologia
10.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093879

RESUMO

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Assuntos
Hipertensão , MicroRNAs , Ratos , Animais , Angiotensina II/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Tensinas/metabolismo , Ratos Endogâmicos SHR , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Ratos Endogâmicos WKY , Apoptose , Miócitos Cardíacos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo
11.
J Mol Cell Biol ; 14(7)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36002018

RESUMO

In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Feminino , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/metabolismo , Células da Granulosa/metabolismo , Tirosina/metabolismo , Tirosina/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Mamíferos
12.
Theriogenology ; 189: 42-52, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724451

RESUMO

Modulation of phosphoinositide 3-kinase/protein kinase B/phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway in mammals yields mixed results. A deep understanding of its regulation can be a powerful tool for better in vitro blastocyst production. This systematic review aims to map the evidence of PI3K/AKT/PTEN pathway modulation during in vitro maturation (IVM), to assess its effects on meiosis resumption and nuclear maturation progression of mammalian oocytes, and their impacts on embryo development and quality. A total of 1058 articles were screened in three databases, and 22 articles were included. Fifty-two IVM assessments were identified, among which 11 evaluated blastocyst yield. Three PI3K inhibitors (3-methyladenine, Wortmannin, and LY294002) and one AKT inhibitor (SH6) were investigated. The impact of this pathway modulation on meiosis resumption in swines and murines was not well established, depending on the inhibitor used, concentration, and media supplementation, while in bovines, resumption seems to be independent of PI3K/AKT/PTEN pathway. However, progression to metaphase II (MII) is highly controlled by this pathway on both bovines and swines. Studies that focused on the inhibition reversibility showed that the removal of the modulator produced MII rates similar to the control group. Experiments that aimed to temporarily block meiosis resumption or reduce PI3K activity resulted in blastocyst production equal to or even higher than control groups. Altogether, these data indicate the paramount potential of this pathway as a possible strategy to improve overall in vitro embryo production efficiency, by synchronizing both nuclear and cytoplasmic maturation.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Fosfatidilinositol 3-Quinases , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Mamíferos , Meiose , Oócitos/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tensinas/metabolismo
13.
Hepatology ; 76(4): 951-966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35076948

RESUMO

BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas , Anilidas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/metabolismo , Camundongos , Monoéster Fosfórico Hidrolases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridinas , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR , Tensinas
14.
Commun Biol ; 4(1): 416, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772116

RESUMO

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.


Assuntos
Síndrome Metabólica/terapia , Monoéster Fosfórico Hidrolases/genética , Substâncias Protetoras/farmacologia , Transdução de Sinais , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
15.
Cell Biol Int ; 45(2): 305-319, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33079432

RESUMO

Phosphoserine phosphatase (PSPH), a key enzyme of the l-serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Monoéster Fosfórico Hidrolases/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
16.
Nat Commun ; 11(1): 6087, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257696

RESUMO

Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1-/- induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


Assuntos
Doenças Cerebelares/metabolismo , Quelantes/metabolismo , Citoplasma/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ácido Fítico/metabolismo , Animais , Morte Celular , Diferenciação Celular , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Homeostase , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Transtornos do Neurodesenvolvimento/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/farmacologia , Fosforilação , Células-Tronco/efeitos dos fármacos , Transcriptoma
17.
J Cell Biochem ; 119(12): 9899-9909, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132953

RESUMO

Osteosarcoma (OS) is an aggressive malignant tumor of bone, which often occurs in children and adolescents. Currently, the effective method for the treatment of OS is still limited. The study aimed to investigate the synergistic antitumor effect of inositol polyphosphate-4-phosphatase, type-II (INPP4B) and rucaparib on OS cells. The expression levels of INPP4B in OS tissues and OS cell lines were examined by quantitative real-time polymerase chain reaction and Western blot analysis. SaOS2 and U2OS cells were then transfected with overexpression vector of INPP4B or were treated with different concentrations of rucaparib, and cell viability, cell cycle, and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry. Western blot assay uncovered the combined effects of INPP4B and rucaparib on cell cycle, apoptosis and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signal pathway. Further, the tumor formation was examined in vivo. Results showed that INPP4B was low expressed in OS tissues and in OS cell lines. INPP4B overexpression significantly decreased cell viability and induced apoptosis in SaOS2 and U2OS cells. Additionally, rucaparib remarkably reduced cell viability in a dose-dependent and time-dependent manner. Meanwhile, rucaparib suppressed cell cycle progression in the S phase and promoted apoptosis in a dose-dependent manner. Further, combination of INPP4B overexpression and rucaparib declined Myc, cyclin E1 and cyclin D1 expressions, enhanced Bad, Bax, and cleaved-caspase-3 expressions, and blocked PI3K/AKT signal pathway in SaOS2 and U2OS cells. Finally, combination of INPP4B overexpression and rucaparib inhibited tumor formation in vivo. The study demonstrated that INPP4B and rucaparib exhibited synergistic antitumor effect by regulating PI3K/AKT pathway in OS cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Indóis/farmacologia , Osteossarcoma/tratamento farmacológico , Monoéster Fosfórico Hidrolases/farmacologia , Transdução de Sinais , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/fisiopatologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/uso terapêutico , Masculino , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/fisiopatologia , Fosfatidilinositol 3-Quinase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto Jovem
18.
Cell Signal ; 44: 171-187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329781

RESUMO

Dopamine (DA) reuptake is the primary mechanism to terminate dopaminergic transmission in the synaptic cleft. The dopamine transporter (DAT) has an important role in the regulation of DA reuptake. This study provides anatomical and physiological evidence that DAT recycling is regulated by ceramide kinase via the sphingomyelin pathway. First, the results show that DAT and neutral sphingomyelinase 2 (nSMase2) were successfully co-precipitated from striatal samples and were colocalized in the mouse striatum or PC12 cells. We also identified a protein-protein interaction between nSMase2 and DAT through in situ proximity ligation assay experiments in the mouse striatum. Second, dopamine (DA) stimulated the formation of ceramide and increased nSMase activity in PC12 cells, while treatment with a cell-permeable ceramide-1-phosphate (C1P) increased DA uptake. Third, we used inhibitors and siRNA to inhibit nSMase2 and ceramide kinase and observed the effects on DAT recycling in PC12 cells. Treatment with ceramide kinase inhibitor K1, or nSMase inhibitor GW4869, decreased DA uptake in PC12 cells, although the application of FB1, a ceramide synthase inhibitor, did not affect DA uptake. Transfection of nSMase2 and CERK siRNA decreased DAT surface level in PC12 cells. These results suggested that SM-derived C1P affects cell surface levels of DAT.


Assuntos
Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Transporte Biológico , Ceramidas/metabolismo , Camundongos Endogâmicos C57BL , Oxirredutases/antagonistas & inibidores , Células PC12 , Monoéster Fosfórico Hidrolases/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ligação Proteica , Ratos
19.
Plant Physiol Biochem ; 109: 502-514, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27835848

RESUMO

The DING protein family consists of proteins of great biological importance due to their ability to inhibit carcinogenic cell growth. A DING peptide with Mr ∼7.57 kDa and pI ∼5.06 was detected in G10P1.7.57, a protein fraction from Capsicum chinense Jacq. seeds. Amino acid sequencing of the peptide produced three smaller peptides showing identity to the DING protein family. G10P1.7.57 displayed a phosphatase activity capable of dephosphorylating different phosphorylated substrates and inhibited the growth of Saccharomyces cerevisiae cells. Western immunoblotting with a custom-made polyclonal antibody raised against a sequence (ITYMSPDYAAPTLAGLDDATK), derived from the ∼7.57 kDa polypeptide, immunodetected an âˆ¼ 39 kDa polypeptide in G10P1.7.57. Purification by electroelution followed by amino acid sequencing of the ∼39 kDa polypeptide yielded seven new peptide sequences and an additional one identical to that of the initially identified peptide. Western immunoblotting of soluble proteins from C. chinense seeds and leaves revealed the presence of the ∼39 kDa polypeptide at all developmental stages, with increased accumulation when the organs reached maturity. Immunolocalization using Dabsyl chloride- or Alexa fluor 488-conjugated antibodies revealed a specific fluorescent signal in the cell cytoplasm at all developmental stages, giving support to the idea that the ∼39 kDa polypeptide is a soluble DING protein. Thus, we have identified and characterized a protein fraction with a DING protein from C. chinense.


Assuntos
Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Focalização Isoelétrica , Peso Molecular , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
20.
Stem Cells ; 33(3): 848-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25402778

RESUMO

Promoting the expansion of adult stem cell populations offers the potential to ameliorate radiation or chemotherapy-induced bone marrow failure and allows for expedited recovery for patients undergoing these therapies. Previous genetic studies suggested a pivotal role for SH2 domain-containing inositol-5-phosphatase 1 (SHIP1) in limiting the size of the hematopoietic stem cell (HSC) compartment. The aim of this study was to determine whether our recent development of small molecule SHIP1 inhibitors offers the potential for pharmacological expansion of the HSC compartment in vivo. We show here that treatment of mice with aminosteroid inhibitors of SHIP1 (SHIPi) more than doubles the size of the adult mesenchymal stem cell (MSC) compartment while simultaneously expanding the HSC pool sixfold. Consistent with its ability to target SHIP1 function in vivo, SHIPi also significantly increases plasma granulocyte colony-stimulating factor (G-CSF) levels, a growth factor that supports proliferation of HSC. Here, we show that SHIPi-induced G-CSF production mediates HSC and MSC expansion, as in vivo neutralization of G-CSF abrogates the SHIPi-induced expansion of both the HSC and MSC compartments. Due to its expansionary effect on adult stem cell compartments, SHIPi represents a potential novel strategy to improve declining stem cell function in both therapy induced and genetically derived bone marrow failure syndromes.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Fator Estimulador de Colônias de Granulócitos/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Inositol Polifosfato 5-Fosfatases , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA