Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
IUCrJ ; 11(Pt 5): 645-646, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39212519

RESUMO

The photo-reaction of the LOV1 domain of the Chlamydomonas reinhardtii phototropin is investigated by room-temperature time-resolved serial crystallography. A covalent adduct forms between the C4a atom of the central flavin-mononucleotide chromophore and a protein cysteine. The structure of the adduct is very similar to that of LOV2 determined 23 years ago from the maidenhair fern Phy3.


Assuntos
Chlamydomonas reinhardtii , Fototropinas , Síncrotrons , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cristalografia por Raios X/métodos , Fototropinas/química , Fototropinas/metabolismo , Modelos Moleculares , Mononucleotídeo de Flavina/química , Domínios Proteicos , Chlamydomonas/química , Chlamydomonas/metabolismo
2.
Nat Commun ; 15(1): 3574, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678027

RESUMO

Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,ß-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.


Assuntos
Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dipeptídeos/química , Dipeptídeos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/química , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/biossíntese
3.
Protein Sci ; 33(4): e4921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501448

RESUMO

Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.


Assuntos
Flavoproteínas , Fármacos Fotossensibilizantes , Flavoproteínas/química , Flavoproteínas/metabolismo , Domínios Proteicos , Sítios de Ligação , Aminoácidos , Mononucleotídeo de Flavina/química
4.
Protein Sci ; 32(4): e4590, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764820

RESUMO

Photoreceptors containing the light-oxygen-voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark-state recovery are not well understood. Here we incorporated the non-canonical amino acid p-cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light-induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time-resolved multi-probe UV/visible and IR spectroscopy experiments of the lit-to-dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN-cysteinyl adduct scission, folding of α-helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N-terminal A'α extension of the LOV domain in controlling EL222 photocycle length.


Assuntos
Aminoácidos , Mononucleotídeo de Flavina , Aminoácidos/metabolismo , Mononucleotídeo de Flavina/química , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica
5.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140781, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421609

RESUMO

The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the KmATP values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the ß4n-ß5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.


Assuntos
Mononucleotídeo de Flavina , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Corynebacterium/metabolismo , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/metabolismo , Nucleotidiltransferases , Substâncias Redutoras , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato
6.
Phys Chem Chem Phys ; 23(25): 13934-13950, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34142688

RESUMO

Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.


Assuntos
Glutamina/química , Sequência de Aminoácidos , Avena/química , Cisteína/química , Mononucleotídeo de Flavina/química , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Distribuição Normal , Processos Fotoquímicos , Fototropinas/química , Ligação Proteica , Conformação Proteica , Espectrofotometria Infravermelho , Sphingomonadaceae/química , Relação Estrutura-Atividade , Termodinâmica
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073057

RESUMO

Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.


Assuntos
Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , NADP/química , Imagem Óptica/métodos , Fenômenos Bioquímicos , Células HaCaT , Humanos , Oxirredução
8.
Methods Mol Biol ; 2280: 87-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751431

RESUMO

Riboflavin, or vitamin B2, is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential redox (and sometimes non-redox) cofactors of a large number of flavoenzymes involved in energetic metabolism, protein folding, apoptosis, chromatin remodeling, and a number of other cell regulatory processes.The cellular and subcellular steady-state concentrations of flavin cofactors, which are available for flavoprotein biogenesis and assembly, depend on carrier-mediated transport processes and on coordinated synthesizing/destroying enzymatic activities, catalyzed by enzymes whose catalytic and structural properties are still matter of investigation.Alteration of flavin homeostasis has been recently correlated to human pathological conditions, such as neuromuscular disorders and cancer, and therefore we propose here protocols useful to detect metabolic processes involved in FAD forming and destroying.Our protocols exploit the chemical-structural differences between riboflavin, FMN , and FAD , which are responsible for differences in the spectroscopic properties (mainly fluorescence) of the two cofactors (FMN and FAD); therefore, in our opinion, when applicable measurements of fluorescence changes in continuo represent the elective techniques to follow FAD synthesis and degradation. Thus, after procedures able to calibrate flavin concentrations (Subheading 3.1), we describe simple continuous and rapid procedures, based on the peculiar optical properties of free flavins, useful to determine the rate of cofactor metabolism catalyzed by either recombinant enzymes or natural enzymes present in cellular lysates/subfractions (Subheading 3.2).Fluorescence properties of free flavins can also be useful in analytical determinations of the three molecular flavin forms, based on HPLC separation, with a quite high sensitivity. Assaying at different incubation times the molecular composition of the reaction mixture is a discontinuous experimental approach to measure the rate of FAD synthesis/degradation catalyzed by cell lysates or recombinant FAD synthase (Subheading 3.3). Continuous and discontinuous approaches can, when necessary, be performed in parallel.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Riboflavina/análise , Riboflavina/química , Animais , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/isolamento & purificação , Mononucleotídeo de Flavina/análise , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/análise , Flavina-Adenina Dinucleotídeo/química , Fluorescência , Homeostase , Humanos , Proteínas Recombinantes/metabolismo
9.
Biochimie ; 182: 217-227, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516756

RESUMO

Flavin adenine dinucleotide synthetase (FADS), a bifunctional prokaryotic enzyme, is involved in the synthesis of two vital cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Here, we investigated the biochemical characteristics of FADS from Staphylococcus aureus (Sa), a pathogenic bacteria causing food-borne diseases. The SaFADS possesses riboflavin kinase (RFK) and FMN adenylyltransferase (FMNAT) activities that transforms riboflavin to FMN and FMN to FAD, respectively. The FMNAT domain also exhibits reversible FAD pyrophosphorylase activity (FADpp). Further, we show that the FMNAT and FADpp activities are dependent on the reducing environment. Mutations of the conserved K289 and F290 residues present on the RFK domain affect the kinetic parameters of both the RFK and FMNAT domains. Additionally, the molecular dynamics analysis of apo and riboflavin: ATP: Mg2+ ternary complex of SaFADS shows that F290 is involved in stabilizing the active site geometry to hold the enzyme-substrate complex. In addition, the deletion of the αh2 helix that acts as a connecting linker between the FMNAT and RFK domains showed substantial loss of their activities. The helix deletion could have affected the flap motion of L2c, L4c, ß4n and L3n present in the close proximity resulting in the distortion of the active site geometry. In conclusion, our study has characterized the RFK and FMNAT activities of SaFADS and shown the importance of conserved K289 and F290 in RFK activity. As FADSs are potential drug targets, understanding their mechanism of action might help in discovering species-specific antibacterial drugs.


Assuntos
Proteínas de Bactérias/química , Nucleotidiltransferases/química , Staphylococcus aureus/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Riboflavina/química , Riboflavina/metabolismo , Staphylococcus aureus/genética , Especificidade por Substrato
10.
ACS Appl Bio Mater ; 4(5): 4384-4393, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006850

RESUMO

An appealing strategy that overcomes the hydrophobicity of pristine graphene and favors its interaction with biological media is colloidal stabilization in aqueous medium with the support of a biomolecule, such as flavin mononucleotide (FMN), as exfoliating/dispersing agent. However, to establish FMN-stabilized graphene (PG-FMN) as suitable for use in biomedicine, its biocompatibility must be proved by a complete assessment of cytotoxicity at the cellular level. Furthermore, if PG-FMN is to be proposed as a theranostic agent, such a study should include both healthy and tumoral cells and its outcome should reveal the nanomaterial as selectively toxic to the latter. Here, we provide an in-depth comparative in vitro analysis of the response of Saos-2 human sarcoma osteoblasts (model tumor cells) and MC3T3-E1 murine preosteoblasts (undifferentiated healthy cells) upon incubation with different concentrations (10-50 µg mL-1) of PG-FMN dispersions constituted by flakes with different average lateral size (90 and 270 nm). Specifically, the impact of PG-FMN on the viability and cell proliferation, reactive oxygen species (ROS) production, and the cellular incorporation process, cell-cycle progression, and apoptosis has been evaluated. PG-FMN was found to be toxic to both types of cells by increasing ROS production and triggering cell-cycle arrest. The present results constitute a cautionary tale on the need to establish the effect of a nanomaterial not only on tumor cells but also on healthy ones before proposing it as anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Mononucleotídeo de Flavina/farmacologia , Grafite/farmacologia , Osteossarcoma/tratamento farmacológico , Nanomedicina Teranóstica , Células 3T3 , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Mononucleotídeo de Flavina/química , Grafite/química , Humanos , Teste de Materiais , Camundongos , Osteossarcoma/patologia , Tamanho da Partícula
11.
Biochemistry ; 59(26): 2419-2431, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32516529

RESUMO

Dihydropyrimidine dehydrogenase (DPD) catalyzes the initial step in the catabolism of the pyrimidines uracil and thymine. Crystal structures have revealed an elaborate subunit architecture consisting of two flavin cofactors, apparently linked by four Fe4S4 centers. Analysis of the DPD reaction(s) equilibrium position under anaerobic conditions revealed a reaction that favors dihydropyrimidine formation. Single-turnover analysis shows biphasic kinetics. The serine variant of the candidate general acid, cysteine 671, provided enhanced kinetic resolution for these phases. In the first event, one subunit of the DPD dimer takes up two electrons from NADPH in a reductive activation. Spectrophotometric deconvolution suggests that these electrons reside on one of the two flavins. The fact that oxidation of the enzyme by dioxygen can be suppressed by the addition of pyrimidine is consistent with these electrons residing on the FMN. The second phase involves further oxidation of NADPH and concomitant reduction of the pyrimidine substrate. During this phase no net reduction of DPD cofactors is observed, indicating that the entire cofactor set acts as a wire, transmitting electrons from NADPH to the pyrimidine rapidly. This indicates that the availability of the proton from the C671 general acid controls the transmittance of electrons from NADPH to the pyrimidine. Acid quench and high-performance liquid chromatography product analysis of single-turnover reactions with limiting NADPH confirmed a 2:1 NADPH:pyrimidine stoichiometry for the enzyme, accounting for successive activation and pyrimidine reduction. These data support an alternating subunit model in which one protomer is activated and turns over before the other subunit can be activated and enter catalysis.


Assuntos
Di-Hidrouracila Desidrogenase (NADP)/química , Mononucleotídeo de Flavina/química , NADP/química , Pirimidinas/química , Sus scrofa , Animais , Di-Hidrouracila Desidrogenase (NADP)/genética , Ativação Enzimática
12.
Biophys Chem ; 259: 106337, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126442

RESUMO

LOV2 (Light-Oxygen-Voltage) domain from Avena sativa phototropin 1 (AsLOV2) belongs to the superfamily of PAS (Per-Arnt-Sim) domains, members of which function as signaling sensors. AsLOV2 undergoes a conformational change upon blue-light absorption by its FMN cofactor. AsLOV2 wild type (wt) is intensively studied as a photo-switchable element in conjugation with various proteins. On the other hand, its variant AsLOV2 with replaced cysteinyl residue C450, which is critical for the forming a covalent adduct with FMN upon irradiation, forms a precursor for some recently developed genetically encoded photosensitizers. In the presented work, we investigated conformational properties of AsLOV2 wt and its variant C450A by circular dichroism, tryptophan and FMN fluorescence, and differential scanning calorimetry in dependence on pH and temperature. We show that both variants are similarly sensitive towards pH of solvent. On the other hand, the mutation C450A leads to a more stable AsLOV2 variant in comparison with the wild type. Thermal transitions of the AsLOV2 proteins monitored by circular dichroism indicate the presence of significant residual structure in thermally-denatured states of both proteins in the pH range from 4 to 9. Both pH- and thermal- transitions of AsLOV2 are accompanied by FMN leaching to solvent. Higher stability, reversibility of thermal transitions, and efficiency of FMN rebinding in the case of C450A variant suggest that the cofactor release may be modulated by suitable mutations in combination with a suitable physicochemical perturbation. These findings can have implications for a design of genetically encoded photosensitizers.


Assuntos
Fototropinas/química , Proteínas de Plantas/química , Substituição de Aminoácidos , Avena/química , Avena/metabolismo , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Mononucleotídeo de Flavina/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Triptofano/química
13.
Photochem Photobiol Sci ; 18(11): 2657-2660, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624823

RESUMO

Mr4511 from Methylobacterium radiotolerans is a 164 amino acid protein built of a flavin mononucleotide (FMN) binding, blue-light responsive LOV (Light, Oxygen, Voltage) core domain plus flanking regions. In contrast to the majority of LOV domains, Mr4511 lacks a tryptophan residue that was previously identified as a major quencher for the FMN triplet state in photosensitizers for singlet oxygen (SO) engineered from these photoreceptors. Here we show that for Mr4511 it is sufficient to only mutate the reactive cysteine responsible for the photocycle (Cys71) in the native protein to generate an efficient SO photosensitizer: both C71S and C71G variants exhibit SO quantum yields of formation, ΦΔ, around 0.2 in air-saturated solutions. Under oxygen saturated conditions, ΦΔ reaches ∼0.5 in deuterated buffer. The introduction of Trp112 in the canonical position for LOV domains dramatically lowers ΦΔ to values comparable to miniSOG, one of the early FMN binding proteins touted as a SO sensitizer. Besides its SO properties, Mr4511 is also exceedingly robust against denaturation with urea and is more photostable than free FMN.


Assuntos
Proteínas de Bactérias/metabolismo , Methylobacterium/metabolismo , Oxigênio Singlete/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Polarização de Fluorescência , Mutagênese Sítio-Dirigida , Oxigênio/química , Ligação Proteica , Teoria Quântica , Alinhamento de Sequência , Ureia/química
14.
J Biol Inorg Chem ; 24(6): 849-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410573

RESUMO

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.


Assuntos
Bacillus anthracis/enzimologia , Bacillus anthracis/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Metaloproteases/metabolismo , Cristalografia por Raios X , FMN Redutase/química , FMN Redutase/genética , FMN Redutase/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Metaloproteases/química , Metaloproteases/genética , Ribonucleotídeo Redutases
15.
Sci Rep ; 9(1): 9679, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273268

RESUMO

Melanoma is one of the most aggressive and lethal form of cancer. Photodynamic therapy (PDT) is a clinically approved technique for cancer treatment, including non-melanoma skin cancer. However, the most of conventional photosensitizers are of low efficacy against melanoma due to the possible dark toxicity at high drug concentrations, melanin pigmentation, and induction of anti-oxidant defense mechanisms. In the current research we propose non-toxic flavin mononucleotide (FMN), which is a water-soluble form of riboflavin (vitamin B2) as a promising agent for photodynamic therapy of melanoma. We demonstrated selective accumulation of FMN in melanoma cells in vivo and in vitro in comparison with keratinocytes and fibroblasts. Blue light irradiation with dose 5 J/cm2 of melanoma cells pre-incubated with FMN led to cell death through apoptosis. Thus, the IC50 values of human melanoma A375, Mel IL, and Mel Z cells were in a range of FMN concentration 10-30 µM that can be achieved in tumor tissue under systemic administration. The efficiency of reactive oxygen species (ROS) generation under FMN blue light irradiation was measured in single melanoma cells by a label-free technique using an electrochemical nanoprobe in a real-time control manner. Melanoma xenograft regression in mice was observed as a result of intravenous injection of FMN followed by blue-light irradiation of tumor site. The inhibition of tumor growth was 85-90% within 50 days after PDT treatment.


Assuntos
Mononucleotídeo de Flavina/química , Luz , Melanoma/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Org Lett ; 21(12): 4676-4679, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31184189

RESUMO

The biosynthesis of thioviridamide-like compounds has not been elucidated. Herein, we report that TvaF from the thioviridamide biosynthetic gene cluster is an FMN-dependent cysteine decarboxylase that transforms the C-terminal cysteine of precursor peptides into a thioenol motif and exhibits high substrate flexibility. We resolved the crystal structure of TvaF bound with FMN at 2.24 Å resolution. Key residues for FMN binding and catalytic activity of TvaF have been identified and evaluated by mutagenesis studies.


Assuntos
Carboxiliases/metabolismo , Mononucleotídeo de Flavina/metabolismo , Peptídeos Cíclicos/biossíntese , Carboxiliases/química , Mononucleotídeo de Flavina/química , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/química , Tioamidas/química
17.
Biochemistry ; 58(22): 2608-2616, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31082213

RESUMO

Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A'α helix is observed. With FMN, a "flip" of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead "swings" away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation.


Assuntos
Proteínas de Algas/química , Flavinas/química , Ribonucleotídeos/química , Fatores de Transcrição/química , Proteínas de Algas/efeitos da radiação , Cisteína/química , Mononucleotídeo de Flavina/química , Glutamina/química , Luz , Ochromonas/química , Conformação Proteica/efeitos da radiação , Domínios Proteicos/efeitos da radiação , Fatores de Transcrição/efeitos da radiação
18.
Methods Enzymol ; 620: 469-488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072498

RESUMO

Prenylated flavin mononucleotide (prFMN) is a recently discovered flavin cofactor produced by the UbiX family of FMN prenyltransferases, and is required for the activity of UbiD-like reversible decarboxylases. The latter enzymes are known to be involved in ubiquinone biosynthesis and biotransformation of lignin, aromatic compounds, and unsaturated aliphatic acids. However, exploration of uncharacterized UbiD proteins for biotechnological applications is hindered by our limited knowledge about the biochemistry of prFMN and prFMN-dependent enzymes. Here, we describe experimental protocols and considerations for the biosynthesis of prFMN in vivo and in vitro, in addition to cofactor extraction and application for activation of UbiD proteins.


Assuntos
Carboxiliases/metabolismo , Ensaios Enzimáticos/métodos , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/biossíntese , Aspergillus niger , Carboxiliases/isolamento & purificação , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/isolamento & purificação , Modelos Moleculares , Prenilação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
19.
Mater Sci Eng C Mater Biol Appl ; 100: 11-22, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948045

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have recently emerged as nanomaterials with potential use in biomedicine. An attractive means to favor their interaction with biological media is the use of proper biomolecules as exfoliating/dispersing agents. Here, MoS2 flakes were stabilized with different small functional biomolecules such as adenosine monophosphate (AMP), guanosine monophosphate (GMP) and flavin mononucleotide (FMN) through the strong nucleotide-MoS2 interaction of Lewis acid-base type, rather than just on the weak dispersive and hydrophobic forces commonly associated with the use of many surfactants. The impact of the nucleotide-stabilized MoS2 flakes on the viability and cell proliferation, on the production of intracellular reactive oxygen species (ROS), and on the preosteoblast differentiation process (early stage) has been also evaluated, as well as the incorporation and intracellular localization of the nanomaterials by MC3T3-E1 and Saos-2 cells. The nucleotide-stabilized MoS2 flakes were found to exhibit excellent biocompatibility. Furthermore, their incorporation did not affect the integrity of the cell plasma membrane, which makes them ideal candidates for delivering drug/gene directly into cells. The in vitro cell response of tumor cells to these nanomaterials differs from that of undifferentiated cells, which provides the basis for their potential use in cancer therapy.


Assuntos
Monofosfato de Adenosina/química , Dissulfetos/química , Mononucleotídeo de Flavina/química , Guanosina Monofosfato/química , Molibdênio/química , Nanoestruturas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Nanoestruturas/toxicidade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836629

RESUMO

Human triokinase/flavin mononucleotide (FMN) cyclase (hTKFC) catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of D-glyceraldehyde and dihydroxyacetone (DHA), and the cyclizing splitting of flavin adenine dinucleotide (FAD). hTKFC structural models are dimers of identical subunits, each with two domains, K and L, with an L2-K1-K2-L1 arrangement. Two active sites lie between L2-K1 and K2-L1, where triose binds K and ATP binds L, although the resulting ATP-to-triose distance is too large (≈14 Å) for phosphoryl transfer. A 75-ns trajectory of molecular dynamics shows considerable, but transient, ATP-to-DHA approximations in the L2-K1 site (4.83 Å or 4.16 Å). To confirm the trend towards site closure, and its relationship to kinase activity, apo-hTKFC, hTKFC:2DHA:2ATP and hTKFC:2FAD models were submitted to normal mode analysis. The trajectory of hTKFC:2DHA:2ATP was extended up to 160 ns, and 120-ns trajectories of apo-hTKFC and hTKFC:2FAD were simulated. The three systems were comparatively analyzed for equal lengths (120 ns) following the principles of essential dynamics, and by estimating site closure by distance measurements. The full trajectory of hTKFC:2DHA:2ATP was searched for in-line orientations and short distances of DHA hydroxymethyl oxygens to ATP γ-phosphorus. Full site closure was reached only in hTKFC:2DHA:2ATP, where conformations compatible with an associative phosphoryl transfer occurred in L2-K1 for significant trajectory time fractions.


Assuntos
Apoenzimas/genética , Simulação de Dinâmica Molecular , Fósforo-Oxigênio Liases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Apoenzimas/química , Sítios de Ligação , Catálise , Domínio Catalítico/genética , Di-Hidroxiacetona/química , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavina-Adenina Dinucleotídeo/química , Gliceraldeído/química , Humanos , Fósforo-Oxigênio Liases/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA