Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
2.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732272

RESUMO

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Assuntos
Metabolismo Energético , Pulmão , Morfogênese , Transdução de Sinais , Tretinoína , Animais , Tretinoína/metabolismo , Tretinoína/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Metabolismo Energético/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Embrião de Galinha , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Galinhas
3.
Mol Med Rep ; 25(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779499

RESUMO

Our previous study revealed that metastasis­associated protein 1 (MTA1), which is expressed in vascular endothelial cells, acts as a tube formation promoting factor. The present study aimed to clarify the importance of MTA1 expression in tube formation using MTA1­knockout (KO) endothelial cells (MTA1­KO MSS31 cells). Tube formation was significantly suppressed in MTA1­KO MSS31 cells, whereas MTA1­overexpression MTA1­KO MSS31 cells regained the ability to form tube­like structures. In addition, western blotting analysis revealed that MTA1­KO MSS31 cells showed significantly higher levels of phosphorylation of non­muscle myosin heavy chain IIa, which resulted in suppression of tube formation. This effect was attributed to a decrease of MTA1/S100 calcium­binding protein A4 complex formation. Moreover, inhibition of tube formation in MTA1­KO MSS31 cells could not be rescued by stimulation with vascular endothelial growth factor (VEGF). These results demonstrated that MTA1 may serve as an essential molecule for angiogenesis in endothelial cells and be involved in different steps of the angiogenic process compared with the VEGF/VEGF receptor 2 pathway. The findings showed that endothelial MTA1 and its pathway may serve as promising targets for inhibiting tumor angiogenesis, further supporting the development of MTA1­based antiangiogenic therapies.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , China , Camundongos , Morfogênese/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Metástase Neoplásica/genética , Fosforilação , Proteínas Repressoras/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transativadores/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918063

RESUMO

Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17ß-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.


Assuntos
Estrogênios/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Progesterona/fisiologia , Prolactina/fisiologia , Porco Miniatura/fisiologia , Transcriptoma/fisiologia , Animais , Bromocriptina/administração & dosagem , Sinergismo Farmacológico , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/genética , Estrogênios/deficiência , Feminino , Haloperidol/administração & dosagem , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/efeitos dos fármacos , Acetato de Medroxiprogesterona/administração & dosagem , Modelos Animais , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ovariectomia , Progesterona/deficiência , Prolactina/deficiência , Receptores de Progesterona/análise , Receptores de Progesterona/genética , Suínos , Transcriptoma/efeitos dos fármacos
5.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768868

RESUMO

2-deoxy-D-Ribose (2dDR) was first identified in 1930 in the structure of DNA and discovered as a degradation product of it later when the enzyme thymidine phosphorylase breaks down thymidine into thymine. In 2017, our research group explored the development of wound dressings based on the delivery of this sugar to induce angiogenesis in chronic wounds. In this review, we will survey the small volume of conflicting literature on this and related sugars, some of which are reported to be anti-angiogenic. We review the evidence of 2dDR having the ability to stimulate a range of pro-angiogenic activities in vitro and in a chick pro-angiogenic bioassay and to stimulate new blood vessel formation and wound healing in normal and diabetic rat models. The biological actions of 2dDR were found to be 80 to 100% as effective as VEGF in addition to upregulating the production of VEGF. We then demonstrated the uptake and delivery of the sugar from a range of experimental and commercial dressings. In conclusion, its pro-angiogenic properties combined with its improved stability on storage compared to VEGF, its low cost, and ease of incorporation into a range of established wound dressings make 2dDR an attractive alternative to VEGF for wound dressing development.


Assuntos
Desoxirribose/farmacologia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Indutores da Angiogênese/química , Animais , Bandagens/tendências , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Desoxirribose/metabolismo , Humanos , Morfogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ribose/metabolismo , Ribose/farmacologia , Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
6.
Am J Pathol ; 191(12): 2245-2264, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563512

RESUMO

Whether alterations in the microtubule cytoskeleton affect the ability of endothelial cells (ECs) to sprout and form branching networks of tubes was investigated in this study. Bioassays of human EC tubulogenesis, where both sprouting behavior and lumen formation can be rigorously evaluated, were used to demonstrate that addition of the microtubule-stabilizing drugs, paclitaxel, docetaxel, ixabepilone, and epothilone B, completely interferes with EC tip cells and sprouting behavior, while allowing for EC lumen formation. In bioassays mimicking vasculogenesis using single or aggregated ECs, these drugs induce ring-like lumens from single cells or cyst-like spherical lumens from multicellular aggregates with no evidence of EC sprouting behavior. Remarkably, treatment of these cultures with a low dose of the microtubule-destabilizing drug, vinblastine, led to an identical result, with complete blockade of EC sprouting, but allowing for EC lumen formation. Administration of paclitaxel in vivo markedly interfered with angiogenic sprouting behavior in developing mouse retina, providing corroboration. These findings reveal novel biological activities for pharmacologic agents that are widely utilized in multidrug chemotherapeutic regimens for the treatment of human malignant cancers. Overall, this work demonstrates that manipulation of microtubule stability selectively interferes with the ability of ECs to sprout, a necessary step to initiate and form branched capillary tube networks.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Células Cultivadas , Docetaxel/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/crescimento & desenvolvimento , Epotilonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Paclitaxel/análogos & derivados
7.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1158-L1168, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881909

RESUMO

The TGF-ß signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-ß signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-ß signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-ß signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-ß receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-ß signaling through the GSK3ß-ß-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-ß signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-ß signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.


Assuntos
Cistos/metabolismo , Pneumopatias/patologia , Mesoderma/citologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Cistos/patologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Morfogênese/fisiologia , Organogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
8.
Cells ; 10(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525607

RESUMO

Avian reovirus p17 (ARV p17) is a non-structural protein known to activate autophagy, interfere with gene transcription and induce a significant tumor cell growth inhibition in vitro and in vivo. In this study, we show that ARV p17 is capable of exerting potent antiangiogenic properties. The viral protein significantly inhibited the physiological angiogenesis of human endothelial cells (ECs) by affecting migration, capillary-like structure and new vessel formation. ARV p17 was not only able to suppress the EC physiological angiogenesis but also rendered ECs insensitive to two different potent proangiogenic inducers, such as VEGF-A and FGF-2 in the three-dimensional (3D) Matrigel and spheroid assay. ARV p17 was found to exert its antiangiogenic activity by upregulating transcription and release of the well-known tumor suppressor molecule dipeptidyl peptidase 4 (DPP4). The ability of ARV p17 to impact on angiogenesis is completely new and highlights the "two compartments" activity of the viral protein that is expected to hamper the tumor parenchymal/stromal crosstalk. The complex antitumor activities of ARV p17 open the way to a new promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Neovascularização Patológica/metabolismo , Orthoreovirus Aviário/metabolismo , Proteínas não Estruturais Virais/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Galinhas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microvasos/citologia , Morfogênese/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução Genética , Regulação para Cima/efeitos dos fármacos
9.
Cells ; 11(1)2021 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-35011618

RESUMO

Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.


Assuntos
Ciclo Celular/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Luteolina/farmacologia , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Fenótipo , Prognóstico , Vincristina/farmacologia , Quinases da Família src/metabolismo
10.
Cell Death Dis ; 11(8): 704, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843642

RESUMO

Alternative splicing contributes to diversification of gene function, yet consequences of splicing on functions of specific gene products is poorly understood. The major transcription factor TCF7L2 undergoes alternative splicing but the biological significance of TCF7L2 isoforms has remained largely to be elucidated. Here, we find that the TCF7L2 E-isoforms maintain, whereas the M and S isoforms disrupt morphogenesis of 3D-epithelial cell-derived organoids via regulation of epithelial-mesenchymal transition (EMT). Remarkably, TCF7L2E2 antagonizes, whereas TCF7L2M2/S2 promotes EMT-like effects in epithelial cells induced by transforming growth factor beta (TGFß) signaling. In addition, we find TGFß signaling reduces the proportion of TCF7L2E to TCF7L2M/S protein in cells undergoing EMT. We also find that TCF7L2 operates via TGFß-Smad3 signaling to regulate EMT. Collectively, our findings unveil novel isoform-specific functions for the major transcription factor TCF7L2 and provide novel links between TCF7L2 and TGFß signaling in the control of EMT-like responses and epithelial tissue morphogenesis.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Organoides/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Camundongos , Morfogênese/efeitos dos fármacos , Isoformas de Proteínas , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
11.
Sci Rep ; 10(1): 13728, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792528

RESUMO

Candidiasis is a fungal infection caused by Candida species that have formed a biofilm on epithelial linings of the body. The most frequently affected areas include the vagina, oral cavity and the intestine. In severe cases, the fungi penetrate the epithelium and cause systemic infections. One approach to combat candidiasis is to prevent the adhesion of the fungal hyphae to the epithelium. Here we demonstrate that the endocannabinoid anandamide (AEA) and the endocannabinoid-like N-arachidonoyl serine (AraS) strongly prevent the adherence of C. albicans hyphae to cervical epithelial cells, while the endocannabinoid 2-arachidonoylglycerol (2-AG) has only a minor inhibitory effect. In addition, we observed that both AEA and AraS prevent the yeast-hypha transition and perturb hyphal growth. Real-time PCR analysis showed that AEA represses the expression of the HWP1 and ALS3 adhesins involved in Candida adhesion to epithelial cells and the HGC1, RAS1, EFG1 and ZAP1 regulators of hyphal morphogenesis and cell adherence. On the other hand, AEA increased the expression of NRG1, a transcriptional repressor of filamentous growth. Altogether, our data show that AEA and AraS have potential anti-fungal activities by inhibiting hyphal growth and preventing hyphal adherence to epithelial cells.


Assuntos
Ácidos Araquidônicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/prevenção & controle , Adesão Celular/efeitos dos fármacos , Colo do Útero/efeitos dos fármacos , Endocanabinoides/farmacologia , Células Epiteliais/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Linhagem Celular Tumoral , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Epitélio/efeitos dos fármacos , Epitélio/microbiologia , Feminino , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Hifas/metabolismo , Morfogênese/efeitos dos fármacos , Fatores de Transcrição
12.
Cell Death Dis ; 11(7): 606, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732865

RESUMO

Maf1, a general transcriptional regulator and mTOR downstream effector, is highly expressed in the hippocampus and cortex, but the function of Maf1 in neurons is not well elucidated. Here, we first demonstrate that Maf1 plays a central role in the inhibition of dendritic morphogenesis and the growth of dendritic spines both in vitro and in vivo. Furthermore, Maf1 downregulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. Moreover, we confirmed that Maf1 could regulate the activity of PTEN promoter by luciferase reporter assay, and proved that Maf1 could bind to the promoter of PTEN by ChIP-PCR experiment. We also demonstrate that expression of Maf1 in the hippocampus affects learning and memory in mice. Taken together, we show for the first time that Maf1 inhibits dendritic morphogenesis and the growth of dendritic spines through AKT-mTOR signaling by increasing PTEN expression.


Assuntos
Dendritos/metabolismo , Memória , Morfogênese , Proteínas Repressoras/metabolismo , Animais , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Hipocampo/patologia , Humanos , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Morfogênese/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
13.
Matrix Biol ; 94: 18-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32682018

RESUMO

Type V collagen (ColV) is a component of the endothelial basement membrane zone. During angiogenesis, extracellular matrix remodelling results in the release of active protein fragments that display pro- or anti-angiogenic properties. The latter often exert their activity through their heparin-binding site. We previously characterized a ColVα1-derived fragment called HEPV that contains a high affinity-binding site for heparin and heparan sulphate chains. Here we show that HEPV binds to FGF2 through its heparin-binding site. Using in vitro and in vivo angiogenesis assays, we show that HEPV but not the HEPV mutant at the heparin-binding site, inhibits FGF2-dependant angiogenesis. On the opposite, HEPV does not bind to VEGFA and has no effect on VEGFA-mediated angiogenesis. In 3D collagen gels, the addition of HEPV abrogates endothelial cell invasion and sprouting induced by FGF2. Interestingly, in vivo experiments reveal that HEPV anti-angiogenic activity is associated with the appearance of endothelial to mesenchymal transition (EndMT) markers. Together, these findings indicate that the ColVα1-derived fragment HEPV functions as an anti-angiogenic factor that represses FGF2-mediated angiogenesis through the regulation of endothelial cell plasticity. Previous observations showing that ColV overexpression negatively regulates pathological angiogenesis were left unexplained. Our data provide insights into the possible molecular mechanisms.


Assuntos
Colágeno Tipo V/genética , Fator 2 de Crescimento de Fibroblastos/genética , Morfogênese/genética , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos/genética , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Plasticidade Celular/genética , Células Endoteliais/efeitos dos fármacos , Heparina/genética , Heparitina Sulfato/genética , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Morfogênese/efeitos dos fármacos , Neovascularização Patológica/patologia , Ligação Proteica/genética
14.
PLoS One ; 15(6): e0234375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555682

RESUMO

Renal dysplasia, the major cause of childhood renal failure, is characterized by defective branching morphogenesis and nephrogenesis. Beta-catenin, a transcription factor and cell adhesion molecule, is markedly increased in the nucleus of kidney cells in human renal dysplasia and contributes to its pathogenesis by altering target genes that are essential for kidney development. Quercetin, a naturally occurring flavonoid, reduces nuclear beta-catenin levels and reduces beta-catenin transcriptional activity. In this study, we utilized wild type and dysplastic mouse kidney organ explants to determine if quercetin reduces beta-catenin activity during kidney development and whether it improves the severity of renal dysplasia. In wild type kidney explants, quercetin treatment resulted in abnormal branching morphogenesis and nephrogenesis in a dose dependent manner. In wild type embryonic kidneys, quercetin reduced nuclear beta-catenin expression and decreased expression of beta-catenin target genes Pax2, Six2, and Gdnf, which are essential for kidney development. Our RDB mouse model of renal dysplasia recapitulates the overexpression of beta-catenin and histopathological changes observed in human renal dysplasia. RDB kidneys treated with quercetin resulted in improvements in the overall histopathology, tissue organization, ureteric branching morphogenesis, and nephrogenesis. Quercetin treatment also resulted in reduced nuclear beta-catenin and reduced Pax2 expression. These improvements were associated with the proper organization of vimentin, NCAM, and E-cadherin, and a 45% increase in the number of developing and maturing nephrons. Further, our results show that in human renal dysplasia, beta-catenin, vimentin, and e-cadherin also have abnormal expression patterns. Taken together, these data demonstrate that quercetin treatment reduces nuclear beta-catenin and this is associated with improved epithelial organization of developing nephrons, resulting in increased developing nephrons and a partial rescue of renal dysplasia.


Assuntos
Rim/anormalidades , Rim/efeitos dos fármacos , Quercetina/farmacologia , beta Catenina/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Técnicas de Cultura de Órgãos , Gravidez , Vimentina/metabolismo , beta Catenina/química , beta Catenina/genética
15.
Cell Mol Life Sci ; 77(24): 5207-5221, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32008086

RESUMO

BACKGROUND: Small bowel vascular malformation disease (SBVM) is the most common cause of obscure gastrointestinal bleeding (OGIB). Several studies suggested that EGFL6 was able to promote the growth of tumor endothelial cells by forming tumor vessels. To date, it remains unclear how EGFL6 promotes pathological angiogenesis in SBVM and whether EGFL6 is a target of thalidomide. METHODS: We took advantage of SBVM plasma and tissue samples and compared the expression of EGFL6 between SBVM patients and healthy people via ELISA and Immunohistochemistry. We elucidated the underlying function of EGFL6 in SBVM in vitro and by generating a zebrafish model that overexpresses EGFL6, The cycloheximide (CHX)-chase experiment and CoIP assays were conducted to demonstrate that thalidomide can promote the degradation of EGFL6 by targeting CRBN. RESULTS: The analysis of SBVM plasma and tissue samples revealed that EGFL6 was overexpressed in the patients compared to healthy people. Using in vitro and in vivo assays, we demonstrated that an EMT pathway triggered by the EGFL6/PAX6 axis is involved in the pathogenesis of SBVM. Furthermore, through in vitro and in vivo assays, we elucidated that thalidomide can function as anti-angiogenesis medicine through the regulation of EGFL6 in a proteasome-dependent manner. Finally, we found that CRBN can mediate the effect of thalidomide on EGFL6 expression and that the CRBN protein interacts with EGFL6 via a Lon N-terminal peptide. CONCLUSION: Our findings revealed a key role for EGFL6 in SBVM pathogenesis and provided a mechanism explaining why thalidomide can cure small bowel bleeding resulting from SBVM.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/genética , Neovascularização Patológica/tratamento farmacológico , Peptídeo Hidrolases/genética , Talidomida/farmacologia , Malformações Vasculares/tratamento farmacológico , Proteínas de Peixe-Zebra/genética , Inibidores da Angiogênese/farmacologia , Animais , Cicloeximida/toxicidade , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Hemorragia/genética , Hemorragia/patologia , Humanos , Intestino Delgado/irrigação sanguínea , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Morfogênese/efeitos dos fármacos , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Malformações Vasculares/induzido quimicamente , Malformações Vasculares/genética , Malformações Vasculares/patologia , Peixe-Zebra
16.
Acta Biomater ; 105: 121-130, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31988042

RESUMO

Previously we developed a fibrin hydrogel (FH) decorated with laminin-111 peptides (L1p-FH) and supports three-dimensional (3D) gland microstructures containing polarized acinar cells. Here we expand on these results and show that co-culture of rat parotid Par-C10 cells with mesenchymal stem cells produces migrating branches of gland cells into the L1p-FH and we identify FGF-7 as the principal morphogenetic signal responsible for branching. On the other hand, another FGF family member and gland morphogen, FGF-10 increased proliferation but did not promote migration and therefore, limited the number and length of branched structures grown into the gel. By controlling the mode of growth factor presentation and delivery, we can control the length and cellularity of branches as well as formation of new nodes/clusters within the hydrogel. Such spatial delivery of two or more morphogens may facilitate engineering of anatomically complex tissues/mini organs such as salivary glands that can be used to address developmental questions or as platforms for drug discovery. STATEMENT OF SIGNIFICANCE: Hyposalivation leads to the development of a host of oral diseases. Current treatments only provide temporary relief. Tissue engineering may provide promising permanent solutions. Yet current models are limited to salivary spheroids with no branching networks. Branching structures are vital to an effective functioning gland as they increase the surface area/glandular volume ratio of the tissue, allowing a higher output from the small-sized gland. We describe a strategy that controls branch network formation in salivary glands that is a key in advancing the field of salivary gland tissue engineering.


Assuntos
Hidrogéis/farmacologia , Morfogênese , Glândulas Salivares/citologia , Esferoides Celulares/citologia , Engenharia Tecidual , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Fibrina/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Folículo Piloso/citologia , Humanos , Laminina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Proteoglicanas/farmacologia , Esferoides Celulares/efeitos dos fármacos
17.
Sci Rep ; 9(1): 16005, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690802

RESUMO

Breast cancer is one of the most common cancers diagnosed in women worldwide. Genetic predisposition, such as breast cancer 1 (BRCA1) mutations, account for a minor percentage of the total breast cancer incidences. And thus, many life style factors have also been linked to the disease such as smoking, alcohol consumption and obesity. Emerging studies show that environmental pollutants may also play a role. Bisphenol-A (BPA) has been suspected to contribute to breast cancer development, and has been shown to affect mammary gland development amongst other effects. This prompted its replacement with other bisphenol analogs such as, bisphenol-S (BPS). In this study we used the human mammary epithelial cells, MCF-12A, grown in extracellular matrix to investigate the ability of BPA and BPS to disrupt mammary epithelial cells organization. We show that both BPA and BPS were equipotent in disrupting the organization of the acinar structures, despite BPS being less oestrogenic by other assays. Further, treatment with both compounds enabled the cells to invade the lumen of the structures. This study shows that BPS and BPA are environmental pollutants that may affect mammary development and may contribute to the development of breast cancer.


Assuntos
Compostos Benzidrílicos/toxicidade , Mama/crescimento & desenvolvimento , Disruptores Endócrinos/toxicidade , Células Epiteliais/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Mama/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , Células Epiteliais/citologia , Feminino , Humanos , Morfogênese/efeitos dos fármacos
18.
Arterioscler Thromb Vasc Biol ; 39(10): e219-e232, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434496

RESUMO

OBJECTIVE: Ceramide 1-phosphate (C1P) is a bioactive sphingolipid highly augmented in damaged tissues. Because of its abilities to stimulate migration of murine bone marrow-derived progenitor cells, it has been suggested that C1P might be involved in tissue regeneration. In the present study, we aimed to investigate whether C1P regulates survival and angiogenic activity of human progenitor cells with great therapeutic potential in regenerative medicine such as endothelial colony-orming cells (ECFCs). Approach and Results: C1P protected ECFC from TNFα (tumor necrosis factor-α)-induced and monosodium urate crystal-induced death and acted as a potent chemoattractant factor through the activation of ERK1/2 (extracellular signal-regulated kinases 1 and 2) and AKT pathways. C1P treatment enhanced ECFC adhesion to collagen type I, an effect that was prevented by ß1 integrin blockade, and to mature endothelial cells, which was mediated by the E-selectin/CD44 axis. ECFC proliferation and cord-like structure formation were also increased by C1P, as well as vascularization of gel plug implants loaded or not with ECFC. In a murine model of hindlimb ischemia, local administration of C1P alone promoted blood perfusion and reduced necrosis in the ischemic muscle. Additionally, the beneficial effects of ECFC infusion after ischemia were amplified by C1P pretreatment, resulting in a further and significant enhancement of leg reperfusion and muscle repair. CONCLUSIONS: Our findings suggest that C1P may have therapeutic relevance in ischemic disorders, improving tissue repair by itself, or priming ECFC angiogenic responses such as chemotaxis, adhesion, proliferation, and tubule formation, which result in a better outcome of ECFC-based therapy.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Sensibilidade e Especificidade
19.
In Vitro Cell Dev Biol Anim ; 55(9): 756-765, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420803

RESUMO

Vascular endothelial growth factor (VEGF) inhibition forms the basis for anti-angiogenic therapies. With the methods based on the monoclonal antibody-mediated typical VEGF blockade, pathological angiogenesis in the tumor microenvironment is inhibited and the limitation of tumor growth is provided; however, the existing tumor tissue cannot be intervened. In this study, the anti-angiogenic effects of Semaphorin (SEMA) 3F, which has frequently been reported to have tumor suppressive properties, on a chick chorioallantoic membrane model as well as in vitro cell-cell interactions were investigated and comparatively assessed using anti-VEGF antibody. Vascular endothelial cells and chick embryos were stimulated with 10-16 ng/mL VEGF165 prior to SEMA 3F administration in order to generate pathological vascularization conditions. Both in vitro and in ovo results revealed that SEMA 3F suppressed VEGF165-induced abnormal vascularization more effectively than anti-VEGF. Moreover, the required dose of SEMA 3F was significantly lower than that of anti-VEGF (103 times less under in ovo conditions). In light of these results, SEMA 3F is recommended as an important therapeutic agent for the prevention of pathological angiogenesis. SEMA 3F may offer an effective and efficient anti-angiogenic intervention that can be administered at a lower dose alternative to typical VEGF blocking agents.


Assuntos
Proteínas de Membrana/genética , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Anticorpos Monoclonais/farmacologia , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/farmacologia , Morfogênese/efeitos dos fármacos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
20.
Mar Drugs ; 17(8)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31409009

RESUMO

Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.


Assuntos
Cnidários/química , Ácido N-Acetilneuramínico/química , Nematocisto/química , Animais , Parede Celular/química , Cubomedusas/química , Elasticidade/efeitos dos fármacos , Humanos , Hydra/química , Morfogênese/efeitos dos fármacos , Nanomedicina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA