Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(5): e32808, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749249

RESUMO

Cuproptosis is a recently identified controlled process of cell death that functions in tumor development and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that bind to transcription factors and regulate tumor invasion, penetration, metastasis, and prognosis. However, there are limited data on the function of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma. Utilizing data retrieved from the cancer genome atlas database, we devised a risk prediction model of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma, determined their prognostic significance and relationship with tumor immunity, and screened potential therapeutic drugs. Overall, 178 patients were randomized to a training or test group. We then obtained 6 characteristic cuproptosis-associated lncRNAs from the training group, based on which we constructed the risk prediction model, calculated the risk score, and verified the test group results. Subsequently, we performed differential gene analysis, tumor immunoassays, functional enrichment analysis, and potential drug screening. Finally, we found that the prediction model was highly reliable for the prognostic assessment of pancreatic adenocarcinoma patients. Generally, low risk patients had better outcomes than high risk patients. A tumor immunoassay showed that immunotherapy may benefit high risk patients more as there is a greater likelihood that the tumors could escape the immune system in low-risk patients. Through drug screening, we identified ten drugs that may have therapeutic effects on patients with pancreatic adenocarcinoma. In conclusion, this study constructed a risk prediction model of cuproptosis-associated lncRNAs, which can reliably predict the prognosis of pancreatic adenocarcinoma patients, provided a clinical reference for determining treatment approach, and provided some insights into the associations between lncRNAs and cuproptosis. This provides useful insight to aid in the development of therapeutic drugs for pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma , Apoptose , Neoplasias Pancreáticas , RNA Longo não Codificante , Morte Celular Regulada , Humanos , Adenocarcinoma/metabolismo , Cobre/metabolismo , Imunoterapia , Neoplasias Pancreáticas/metabolismo , Prognóstico , Morte Celular Regulada/fisiologia , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas
2.
Cell Death Dis ; 12(12): 1156, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907160

RESUMO

Lots of cell death initiator and effector molecules, signalling pathways and subcellular sites have been identified as key mediators in both cell death processes in cancer. The XDeathDB visualization platform provides a comprehensive cell death and their crosstalk resource for deciphering the signaling network organization of interactions among different cell death modes associated with 1461 cancer types and COVID-19, with an aim to understand the molecular mechanisms of physiological cell death in disease and facilitate systems-oriented novel drug discovery in inducing cell deaths properly. Apoptosis, autosis, efferocytosis, ferroptosis, immunogenic cell death, intrinsic apoptosis, lysosomal cell death, mitotic cell death, mitochondrial permeability transition, necroptosis, parthanatos, and pyroptosis related to 12 cell deaths and their crosstalk can be observed systematically by the platform. Big data for cell death gene-disease associations, gene-cell death pathway associations, pathway-cell death mode associations, and cell death-cell death associations is collected by literature review articles and public database from iRefIndex, STRING, BioGRID, Reactom, Pathway's commons, DisGeNET, DrugBank, and Therapeutic Target Database (TTD). An interactive webtool, XDeathDB, is built by web applications with R-Shiny, JavaScript (JS) and Shiny Server Iso. With this platform, users can search specific interactions from vast interdependent networks that occur in the realm of cell death. A multilayer spectral graph clustering method that performs convex layer aggregation to identify crosstalk function among cell death modes for a specific cancer. 147 hallmark genes of cell death could be observed in detail in these networks. These potential druggable targets are displayed systematically and tailoring networks to visualize specified relations is available to fulfil user-specific needs. Users can access XDeathDB for free at https://pcm2019.shinyapps.io/XDeathDB/ .


Assuntos
Morte Celular/fisiologia , Morte Celular Regulada/fisiologia , Transdução de Sinais/fisiologia , Animais , COVID-19/metabolismo , COVID-19/fisiopatologia , Análise por Conglomerados , Bases de Dados Factuais , Humanos , Necroptose , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Fagocitose , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Software
3.
Theranostics ; 11(10): 4759-4769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754026

RESUMO

Recently, necroptosis, as a programmed cell death pathway, has drawn much attention as it has been implicated in multiple pathologies, especially in the field of inflammatory diseases. Pseudokinase mixed lineage kinase domain-like protein (MLKL) serves as a terminal-known obligate effector in the process of necroptosis. To date, the majority of research on MLKL has focused on its role in necroptosis, and the prevailing view has been that the sole function of MLKL is to mediate necroptosis. However, increasing evidence indicates that MLKL can serve as a regulator of many diseases via its non-necroptotic functions. These functions of MLKL shed light on its functional complexity and diversity. In this review, we briefly introduce the current state of knowledge regarding the structure of MLKL, necroptosis signaling, as well as cross-linkages among necroptosis and other regulated cell death pathways, and we particularly highlight recent progress related to newly identified functions and inhibitors of MLKL. These discussions promote a better understanding of the role of MLKL in diseases, which will foster efforts to pharmacologically target this molecule in clinical treatments.


Assuntos
Regulação da Expressão Gênica/fisiologia , Necroptose/fisiologia , Proteínas Quinases/fisiologia , Apoptose/fisiologia , Autofagia/fisiologia , Cardiolipinas/metabolismo , Armadilhas Extracelulares , Humanos , Inflamação/metabolismo , Neoplasias/metabolismo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Piroptose/fisiologia , Morte Celular Regulada/fisiologia
4.
Aging (Albany NY) ; 13(3): 3239-3253, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510044

RESUMO

The naked mole rat (NMR), Heterocephalus glaber, is the longest-living rodent species, and is extraordinarily resistant to cancer and aging-related diseases. The molecular basis for these unique phenotypic traits of the NMR is under extensive research. However, the role of regulated cell death (RCD) in the longevity and the protection from cancer in the NMR is still largely unknown. RCD is a mechanism restricting the proliferation of damaged or premalignant cells, which counteracts aging and oncotransformation. In this study, DNA damage-induced cell death in NMR fibroblasts was investigated in comparison to RCD in fibroblasts from Mus musculus. The effects of methyl methanesulfonate, 5-fluorouracil, and etoposide in both cell types were examined using contemporary cell death analyses. Skin fibroblasts from Heterocephalus glaber were found to be more resistant to the action of DNA damaging agents compared to fibroblasts from Mus musculus. Strikingly, our results revealed that NMR cells also exhibit a limited apoptotic response and seem to undergo regulated necrosis. Taken together, this study provides new insights into the mechanisms of cell death in NMR expanding our understanding of longevity, and it paves the way towards the development of innovative therapeutic approaches.


Assuntos
Longevidade/fisiologia , Ratos-Toupeira/fisiologia , Morte Celular Regulada/fisiologia , Animais , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Metanossulfonato de Metila/toxicidade , Camundongos , Morte Celular Regulada/efeitos dos fármacos
5.
Biomolecules ; 10(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935947

RESUMO

Sulfation is a common modification of extracellular glycans, tyrosine residues on proteins, and steroid hormones, and is important in a wide variety of signaling pathways. We investigated the role of sulfation on endogenous oxidative stress, such as glutamate-induced oxytosis and erastin-induced ferroptosis, using mouse hippocampal HT22 cells. Sodium chlorate competitively inhibits the formation of 3'-phosphoadenosine 5'-phosphosulfate, the high energy sulfate donor in cellular sulfation reactions. The treatment of HT22 cells with sodium chlorate decreased sulfation of heparan sulfate proteoglycans and chondroitin sulfate proteoglycans. Sodium chlorate and ß-d-xyloside, which prevents proteoglycan glycosaminoglycan chain attachment, exacerbated both glutamate- and erastin-induced cell death, suggesting that extracellular matrix influenced oxytosis and ferroptosis. Moreover, sodium chlorate enhanced the generation of reactive oxygen species and influx of extracellular Ca2+ in the process of oxytosis and ferroptosis. Interestingly, sodium chlorate did not affect antioxidant glutathione levels. Western blot analysis revealed that sodium chlorate enhanced erastin-induced c-Jun N-terminal kinase phosphorylation, which is preferentially activated by cell stress-inducing signals. Collectively, our findings indicate that sulfation is an important modification for neuroprotection against oxytosis and ferroptosis in neuronal hippocampal cells.


Assuntos
Ferroptose/fisiologia , Morte Celular Regulada/fisiologia , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cloratos/farmacologia , Ferroptose/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfoadenosina Fosfossulfato/química , Proteoglicanas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA